Files
assimp-go/asig/asig.go
2022-10-01 06:35:29 +04:00

626 lines
15 KiB
Go
Executable File

package asig
/*
#cgo CFLAGS: -I .
#cgo LDFLAGS: -L libs
#cgo windows,amd64 LDFLAGS: -l assimp_windows_amd64
#cgo darwin,amd64 LDFLAGS: -l assimp_darwin_amd64
#cgo darwin,arm64 LDFLAGS: -l assimp_darwin_arm64
#include "wrap.c"
#include <stdlib.h>
*/
import "C"
import (
"errors"
"unsafe"
"github.com/bloeys/gglm/gglm"
)
type Node struct {
Name string
//The transformation relative to the node's parent
Transformation *gglm.Mat4
//Parent node. NULL if this node is the root node
Parent *Node
//The child nodes of this node. NULL if mNumChildren is 0
Children []*Node
//Each entry is an index into the mesh list of the scene
MeshIndicies []uint
/** Metadata associated with this node or NULL if there is no metadata.
* Whether any metadata is generated depends on the source file format. See the
* @link importer_notes @endlink page for more information on every source file
* format. Importers that don't document any metadata don't write any.
*/
Metadata map[string]Metadata
}
type Animation struct {
}
type EmbeddedTexture struct {
cTex *C.struct_aiTexture
/** Width of the texture, in pixels
*
* If mHeight is zero the texture is compressed in a format
* like JPEG. In this case mWidth specifies the size of the
* memory area pcData is pointing to, in bytes.
*/
Width uint
/** Height of the texture, in pixels
*
* If this value is zero, pcData points to an compressed texture
* in any format (e.g. JPEG).
*/
Height uint
/** A hint from the loader to make it easier for applications
* to determine the type of embedded textures.
*
* If Height != 0 this member is show how data is packed. Hint will consist of
* two parts: channel order and channel bitness (count of the bits for every
* color channel). For simple parsing by the viewer it's better to not omit
* absent color channel and just use 0 for bitness. For example:
* 1. Image contain RGBA and 8 bit per channel, achFormatHint == "rgba8888";
* 2. Image contain ARGB and 8 bit per channel, achFormatHint == "argb8888";
* 3. Image contain RGB and 5 bit for R and B channels and 6 bit for G channel, achFormatHint == "rgba5650";
* 4. One color image with B channel and 1 bit for it, achFormatHint == "rgba0010";
* If mHeight == 0 then achFormatHint is set set to '\\0\\0\\0\\0' if the loader has no additional
* information about the texture file format used OR the
* file extension of the format without a trailing dot. If there
* are multiple file extensions for a format, the shortest
* extension is chosen (JPEG maps to 'jpg', not to 'jpeg').
* E.g. 'dds\\0', 'pcx\\0', 'jpg\\0'. All characters are lower-case.
* The fourth character will always be '\\0'.
*/
FormatHint string
/** Data of the texture.
* Points to an array of Width * Height (or just len=Width if Height=0, which happens when data is compressed, like if the data is a PNG).
* The format of the texture data is always ARGB8888.
*/
Data []byte
IsCompressed bool
Filename string
}
type Light struct {
}
type Camera struct {
}
type Metadata struct {
Type MetadataType
Value interface{}
}
type MetadataEntry struct {
Data []byte
}
type Scene struct {
cScene *C.struct_aiScene
Flags SceneFlag
RootNode *Node
Meshes []*Mesh
Materials []*Material
/** Helper structure to describe an embedded texture
*
* Normally textures are contained in external files but some file formats embed
* them directly in the model file. There are two types of embedded textures:
* 1. Uncompressed textures. The color data is given in an uncompressed format.
* 2. Compressed textures stored in a file format like png or jpg. The raw file
* bytes are given so the application must utilize an image decoder (e.g. DevIL) to
* get access to the actual color data.
*
* Embedded textures are referenced from materials using strings like "*0", "*1", etc.
* as the texture paths (a single asterisk character followed by the
* zero-based index of the texture in the aiScene::mTextures array).
*/
Textures []*EmbeddedTexture
// Animations []*Animation
// Lights []*Light
// Cameras []*Camera
}
func (s *Scene) releaseCResources() {
C.aiReleaseImport(s.cScene)
}
//
// Assimp API
//
func ImportFile(file string, postProcessFlags PostProcess) (s *Scene, release func(), err error) {
cstr := C.CString(file)
defer C.free(unsafe.Pointer(cstr))
cs := C.aiImportFile(cstr, C.uint(postProcessFlags))
if cs == nil {
return nil, func() {}, getAiErr()
}
s = parseScene(cs)
return s, func() { s.releaseCResources() }, nil
}
func getAiErr() error {
return errors.New("asig error: " + C.GoString(C.aiGetErrorString()))
}
//
// Parsers
//
func parseScene(cs *C.struct_aiScene) *Scene {
s := &Scene{cScene: cs}
s.Flags = SceneFlag(cs.mFlags)
s.RootNode = parseRootNode(cs.mRootNode)
s.Meshes = parseMeshes(cs.mMeshes, uint(cs.mNumMeshes))
s.Materials = parseMaterials(cs.mMaterials, uint(cs.mNumMaterials))
s.Textures = parseTextures(cs.mTextures, uint(s.cScene.mNumTextures))
return s
}
func parseRootNode(cNodesIn *C.struct_aiNode) *Node {
rn := &Node{
Name: parseAiString(cNodesIn.mName),
Transformation: parseMat4(&cNodesIn.mTransformation),
Parent: nil,
MeshIndicies: parseUInts(cNodesIn.mMeshes, uint(cNodesIn.mNumMeshes)),
Metadata: parseMetadata(cNodesIn.mMetaData),
}
rn.Children = parseNodes(cNodesIn.mChildren, rn, uint(cNodesIn.mNumChildren))
return rn
}
func parseNodes(cNodesIn **C.struct_aiNode, parent *Node, parentChildrenCount uint) []*Node {
if cNodesIn == nil {
return []*Node{}
}
nodes := make([]*Node, parentChildrenCount)
cNodes := unsafe.Slice(cNodesIn, parentChildrenCount)
for i := 0; i < len(nodes); i++ {
n := cNodes[i]
//Fill basic node info
nodes[i] = &Node{
Name: parseAiString(n.mName),
Transformation: parseMat4(&n.mTransformation),
Parent: parent,
MeshIndicies: parseUInts(n.mMeshes, uint(n.mNumMeshes)),
Metadata: parseMetadata(n.mMetaData),
}
//Parse node's children
nodes[i].Children = parseNodes(n.mChildren, nodes[i], uint(n.mNumChildren))
}
return nodes
}
func parseMetadata(cMetaIn *C.struct_aiMetadata) map[string]Metadata {
if cMetaIn == nil {
return map[string]Metadata{}
}
meta := make(map[string]Metadata, cMetaIn.mNumProperties)
cKeys := unsafe.Slice(cMetaIn.mKeys, cMetaIn.mNumProperties)
cVals := unsafe.Slice(cMetaIn.mValues, cMetaIn.mNumProperties)
for i := 0; i < int(cMetaIn.mNumProperties); i++ {
meta[parseAiString(cKeys[i])] = parseMetadataEntry(cVals[i])
}
return meta
}
func parseMetadataEntry(cv C.struct_aiMetadataEntry) Metadata {
m := Metadata{Type: MetadataType(cv.mType)}
if cv.mData == nil {
return m
}
switch m.Type {
case MetadataTypeBool:
m.Value = *(*bool)(cv.mData)
case MetadataTypeFloat32:
m.Value = *(*float32)(cv.mData)
case MetadataTypeFloat64:
m.Value = *(*float64)(cv.mData)
case MetadataTypeInt32:
m.Value = *(*int32)(cv.mData)
case MetadataTypeUint64:
m.Value = *(*uint64)(cv.mData)
case MetadataTypeString:
m.Value = parseAiString(*(*C.struct_aiString)(cv.mData))
case MetadataTypeVec3:
m.Value = parseVec3((*C.struct_aiVector3D)(cv.mData))
}
return m
}
func parseTextures(cTexIn **C.struct_aiTexture, count uint) []*EmbeddedTexture {
if cTexIn == nil {
return []*EmbeddedTexture{}
}
textures := make([]*EmbeddedTexture, count)
cTex := unsafe.Slice(cTexIn, count)
for i := 0; i < int(count); i++ {
textures[i] = &EmbeddedTexture{
cTex: cTex[i],
Width: uint(cTex[i].mWidth),
Height: uint(cTex[i].mHeight),
FormatHint: C.GoString(&cTex[i].achFormatHint[0]),
Filename: parseAiString(cTex[i].mFilename),
Data: parseTexels(cTex[i].pcData, uint(cTex[i].mWidth), uint(cTex[i].mHeight)),
IsCompressed: cTex[i].mHeight == 0,
}
}
return textures
}
func parseTexels(cTexelsIn *C.struct_aiTexel, width, height uint) []byte {
//e.g. like a png. Otherwise we have pure color data
isCompressed := height == 0
texelCount := width
if !isCompressed {
texelCount *= height
}
texelCount /= 4
data := make([]byte, texelCount*4)
cTexels := unsafe.Slice(cTexelsIn, texelCount)
for i := 0; i < int(texelCount); i++ {
//Order here is important as in a compressed format the order will represent arbitrary bytes, not colors.
//In aiTexel the struct field order is {b,g,r,a}, which puts A in the high bits and leads to a format of ARGB8888, therefore it must be maintained here
index := i * 4
data[index] = byte(cTexels[i].b)
data[index+1] = byte(cTexels[i].g)
data[index+2] = byte(cTexels[i].r)
data[index+3] = byte(cTexels[i].a)
}
return data
}
func parseMeshes(cm **C.struct_aiMesh, count uint) []*Mesh {
if cm == nil {
return []*Mesh{}
}
meshes := make([]*Mesh, count)
cmeshes := unsafe.Slice(cm, count)
for i := 0; i < int(count); i++ {
m := &Mesh{}
cmesh := cmeshes[i]
vertCount := uint(cmesh.mNumVertices)
m.Vertices = parseVec3s(cmesh.mVertices, vertCount)
m.Normals = parseVec3s(cmesh.mNormals, vertCount)
m.Tangents = parseVec3s(cmesh.mTangents, vertCount)
m.BitTangents = parseVec3s(cmesh.mBitangents, vertCount)
//Color sets
m.ColorSets = parseColorSet(cmesh.mColors, vertCount)
//Tex coords
m.TexCoords = parseTexCoords(cmesh.mTextureCoords, vertCount)
m.TexCoordChannelCount = [8]uint{}
for j := 0; j < len(cmesh.mTextureCoords); j++ {
//If a color set isn't available then it is nil
if cmesh.mTextureCoords[j] == nil {
continue
}
m.TexCoordChannelCount[j] = uint(cmeshes[j].mNumUVComponents[j])
}
//Faces
cFaces := unsafe.Slice(cmesh.mFaces, cmesh.mNumFaces)
m.Faces = make([]Face, cmesh.mNumFaces)
for j := 0; j < len(m.Faces); j++ {
m.Faces[j] = Face{
Indices: parseUInts(cFaces[j].mIndices, uint(cFaces[j].mNumIndices)),
}
}
//Other
m.Bones = parseBones(cmesh.mBones, uint(cmesh.mNumBones))
m.AnimMeshes = parseAnimMeshes(cmesh.mAnimMeshes, uint(cmesh.mNumAnimMeshes))
m.AABB = AABB{
Min: parseVec3(&cmesh.mAABB.mMin),
Max: parseVec3(&cmesh.mAABB.mMax),
}
m.MorphMethod = MorphMethod(cmesh.mMethod)
m.MaterialIndex = uint(cmesh.mMaterialIndex)
m.Name = parseAiString(cmesh.mName)
meshes[i] = m
}
return meshes
}
func parseVec3(cv *C.struct_aiVector3D) gglm.Vec3 {
if cv == nil {
return gglm.Vec3{}
}
return gglm.Vec3{
Data: [3]float32{
float32(cv.x),
float32(cv.y),
float32(cv.z),
},
}
}
func parseAnimMeshes(cam **C.struct_aiAnimMesh, count uint) []*AnimMesh {
if cam == nil {
return []*AnimMesh{}
}
animMeshes := make([]*AnimMesh, count)
cAnimMeshes := unsafe.Slice(cam, count)
for i := 0; i < int(count); i++ {
m := cAnimMeshes[i]
animMeshes[i] = &AnimMesh{
Name: parseAiString(m.mName),
Vertices: parseVec3s(m.mVertices, uint(m.mNumVertices)),
Normals: parseVec3s(m.mNormals, uint(m.mNumVertices)),
Tangents: parseVec3s(m.mTangents, uint(m.mNumVertices)),
BitTangents: parseVec3s(m.mBitangents, uint(m.mNumVertices)),
Colors: parseColorSet(m.mColors, uint(m.mNumVertices)),
TexCoords: parseTexCoords(m.mTextureCoords, uint(m.mNumVertices)),
Weight: float32(m.mWeight),
}
}
return animMeshes
}
func parseTexCoords(ctc [MaxTexCoords]*C.struct_aiVector3D, vertCount uint) [MaxTexCoords][]gglm.Vec3 {
texCoords := [MaxTexCoords][]gglm.Vec3{}
for j := 0; j < len(ctc); j++ {
//If a color set isn't available then it is nil
if ctc[j] == nil {
continue
}
texCoords[j] = parseVec3s(ctc[j], vertCount)
}
return texCoords
}
func parseColorSet(cc [MaxColorSets]*C.struct_aiColor4D, vertCount uint) [MaxColorSets][]gglm.Vec4 {
colorSet := [MaxColorSets][]gglm.Vec4{}
for j := 0; j < len(cc); j++ {
//If a color set isn't available then it is nil
if cc[j] == nil {
continue
}
colorSet[j] = parseColors(cc[j], vertCount)
}
return colorSet
}
func parseBones(cbs **C.struct_aiBone, count uint) []*Bone {
if cbs == nil {
return []*Bone{}
}
bones := make([]*Bone, count)
cbones := unsafe.Slice(cbs, count)
for i := 0; i < int(count); i++ {
cBone := cbones[i]
bones[i] = &Bone{
Name: parseAiString(cBone.mName),
Weights: parseVertexWeights(cBone.mWeights, uint(cBone.mNumWeights)),
OffsetMatrix: *parseMat4(&cBone.mOffsetMatrix),
}
}
return bones
}
func parseMat4(cm4 *C.struct_aiMatrix4x4) *gglm.Mat4 {
if cm4 == nil {
return &gglm.Mat4{}
}
return &gglm.Mat4{
Data: [4][4]float32{
{float32(cm4.a1), float32(cm4.b1), float32(cm4.c1), float32(cm4.d1)},
{float32(cm4.a2), float32(cm4.b2), float32(cm4.c2), float32(cm4.d2)},
{float32(cm4.a3), float32(cm4.b3), float32(cm4.c3), float32(cm4.d3)},
{float32(cm4.a4), float32(cm4.b4), float32(cm4.c4), float32(cm4.d4)},
},
}
}
func parseVertexWeights(cWeights *C.struct_aiVertexWeight, count uint) []VertexWeight {
if cWeights == nil {
return []VertexWeight{}
}
vw := make([]VertexWeight, count)
cvw := unsafe.Slice(cWeights, count)
for i := 0; i < int(count); i++ {
vw[i] = VertexWeight{
VertIndex: uint(cvw[i].mVertexId),
Weight: float32(cvw[i].mWeight),
}
}
return vw
}
func parseAiString(aiString C.struct_aiString) string {
if aiString.length == 0 {
return ""
}
return C.GoStringN(&aiString.data[0], C.int(aiString.length))
}
func parseUInts(cui *C.uint, count uint) []uint {
if cui == nil {
return []uint{}
}
uints := make([]uint, count)
cUInts := unsafe.Slice(cui, count)
for i := 0; i < len(cUInts); i++ {
uints[i] = uint(cUInts[i])
}
return uints
}
func parseVec3s(cv *C.struct_aiVector3D, count uint) []gglm.Vec3 {
if cv == nil {
return []gglm.Vec3{}
}
carr := unsafe.Slice(cv, count)
verts := make([]gglm.Vec3, count)
for i := 0; i < int(count); i++ {
verts[i] = gglm.Vec3{
Data: [3]float32{
float32(carr[i].x),
float32(carr[i].y),
float32(carr[i].z),
},
}
}
return verts
}
func parseColors(cv *C.struct_aiColor4D, count uint) []gglm.Vec4 {
if cv == nil {
return []gglm.Vec4{}
}
carr := unsafe.Slice(cv, count)
verts := make([]gglm.Vec4, count)
for i := 0; i < int(count); i++ {
verts[i] = gglm.Vec4{
Data: [4]float32{
float32(carr[i].r),
float32(carr[i].g),
float32(carr[i].b),
float32(carr[i].a),
},
}
}
return verts
}
func parseMaterials(cMatsIn **C.struct_aiMaterial, count uint) []*Material {
mats := make([]*Material, count)
cMats := unsafe.Slice(cMatsIn, count)
for i := 0; i < int(count); i++ {
mats[i] = &Material{
cMat: cMats[i],
Properties: parseMatProperties(cMats[i].mProperties, uint(cMats[i].mNumProperties)),
AllocatedStorage: uint(cMats[i].mNumAllocated),
}
}
return mats
}
func parseMatProperties(cMatPropsIn **C.struct_aiMaterialProperty, count uint) []*MaterialProperty {
matProps := make([]*MaterialProperty, count)
cMatProps := unsafe.Slice(cMatPropsIn, count)
for i := 0; i < int(count); i++ {
cmp := cMatProps[i]
matProps[i] = &MaterialProperty{
name: parseAiString(cmp.mKey),
Semantic: TextureType(cmp.mSemantic),
Index: uint(cmp.mIndex),
TypeInfo: MatPropertyTypeInfo(cmp.mType),
Data: C.GoBytes(unsafe.Pointer(cmp.mData), C.int(cmp.mDataLength)),
}
}
return matProps
}