Files
assimp-go/asig/asig.go

447 lines
10 KiB
Go
Executable File

package asig
/*
#cgo CFLAGS: -I .
#cgo LDFLAGS: -L ./libs -l assimp_windows_amd64 -l IrrXML_windows_amd64 -l zlib_windows_amd64
#include <stdlib.h> //Needed for C.free
#include <assimp/scene.h>
//Functions
struct aiScene* aiImportFile(const char* pFile, unsigned int pFlags);
void aiReleaseImport(const struct aiScene* pScene);
const char* aiGetErrorString();
unsigned int aiGetMaterialTextureCount(const struct aiMaterial* pMat, enum aiTextureType type);
*/
import "C"
import (
"errors"
"unsafe"
"github.com/bloeys/gglm/gglm"
)
type Node struct {
}
type Animation struct {
}
type Texel struct {
R, G, B, A byte
}
type Texture struct {
/** Width of the texture, in pixels
*
* If mHeight is zero the texture is compressed in a format
* like JPEG. In this case mWidth specifies the size of the
* memory area pcData is pointing to, in bytes.
*/
Width uint
/** Height of the texture, in pixels
*
* If this value is zero, pcData points to an compressed texture
* in any format (e.g. JPEG).
*/
Height uint
/** A hint from the loader to make it easier for applications
* to determine the type of embedded textures.
*
* If mHeight != 0 this member is show how data is packed. Hint will consist of
* two parts: channel order and channel bitness (count of the bits for every
* color channel). For simple parsing by the viewer it's better to not omit
* absent color channel and just use 0 for bitness. For example:
* 1. Image contain RGBA and 8 bit per channel, achFormatHint == "rgba8888";
* 2. Image contain ARGB and 8 bit per channel, achFormatHint == "argb8888";
* 3. Image contain RGB and 5 bit for R and B channels and 6 bit for G channel, achFormatHint == "rgba5650";
* 4. One color image with B channel and 1 bit for it, achFormatHint == "rgba0010";
* If mHeight == 0 then achFormatHint is set set to '\\0\\0\\0\\0' if the loader has no additional
* information about the texture file format used OR the
* file extension of the format without a trailing dot. If there
* are multiple file extensions for a format, the shortest
* extension is chosen (JPEG maps to 'jpg', not to 'jpeg').
* E.g. 'dds\\0', 'pcx\\0', 'jpg\\0'. All characters are lower-case.
* The fourth character will always be '\\0'.
*/
FormatHint string
/** Data of the texture.
*
* Points to an array of mWidth * mHeight aiTexel's.
* The format of the texture data is always ARGB8888 to
* make the implementation for user of the library as easy
* as possible. If mHeight = 0 this is a pointer to a memory
* buffer of size mWidth containing the compressed texture
* data. Good luck, have fun!
*/
Texels []Texel
Filename string
}
type Light struct {
}
type Camera struct {
}
type Metadata struct {
}
type Scene struct {
cScene *C.struct_aiScene
Flags SceneFlag
RootNode *Node
Meshes []*Mesh
Materials []*Material
Animations []*Animation
Textures []*Texture
Lights []*Light
Cameras []*Camera
}
func (s *Scene) releaseCResources() {
C.aiReleaseImport(s.cScene)
}
//
// Assimp API
//
func ImportFile(file string, postProcessFlags PostProcess) (s *Scene, release func(), err error) {
cstr := C.CString(file)
defer C.free(unsafe.Pointer(cstr))
cs := C.aiImportFile(cstr, C.uint(postProcessFlags))
if cs == nil {
return nil, func() {}, getAiErr()
}
s = parseScene(cs)
return s, func() { s.releaseCResources() }, nil
}
func getAiErr() error {
return errors.New("asig error: " + C.GoString(C.aiGetErrorString()))
}
//
// Parsers
//
func parseScene(cs *C.struct_aiScene) *Scene {
s := &Scene{cScene: cs}
s.Flags = SceneFlag(cs.mFlags)
s.Meshes = parseMeshes(cs.mMeshes, uint(cs.mNumMeshes))
s.Materials = parseMaterials(cs.mMaterials, uint(cs.mNumMaterials))
return s
}
func parseMeshes(cm **C.struct_aiMesh, count uint) []*Mesh {
if cm == nil {
return []*Mesh{}
}
meshes := make([]*Mesh, count)
cmeshes := unsafe.Slice(cm, count)
for i := 0; i < int(count); i++ {
m := &Mesh{}
cmesh := cmeshes[i]
vertCount := uint(cmesh.mNumVertices)
m.Vertices = parseVec3s(cmesh.mVertices, vertCount)
m.Normals = parseVec3s(cmesh.mNormals, vertCount)
m.Tangents = parseVec3s(cmesh.mTangents, vertCount)
m.BitTangents = parseVec3s(cmesh.mBitangents, vertCount)
//Color sets
m.ColorSets = parseColorSet(cmesh.mColors, vertCount)
//Tex coords
m.TexCoords = parseTexCoords(cmesh.mTextureCoords, vertCount)
m.TexCoordChannelCount = [8]uint{}
for j := 0; j < len(cmesh.mTextureCoords); j++ {
//If a color set isn't available then it is nil
if cmesh.mTextureCoords[j] == nil {
continue
}
m.TexCoordChannelCount[j] = uint(cmeshes[j].mNumUVComponents[j])
}
//Faces
cFaces := unsafe.Slice(cmesh.mFaces, cmesh.mNumFaces)
m.Faces = make([]Face, cmesh.mNumFaces)
for j := 0; j < len(m.Faces); j++ {
m.Faces[j] = Face{
Indices: parseUInts(cFaces[j].mIndices, uint(cFaces[j].mNumIndices)),
}
}
//Other
m.Bones = parseBones(cmesh.mBones, uint(cmesh.mNumBones))
m.AnimMeshes = parseAnimMeshes(cmesh.mAnimMeshes, uint(cmesh.mNumAnimMeshes))
m.AABB = AABB{
Min: parseVec3(&cmesh.mAABB.mMin),
Max: parseVec3(&cmesh.mAABB.mMax),
}
m.MorphMethod = MorphMethod(cmesh.mMethod)
m.MaterialIndex = uint(cmesh.mMaterialIndex)
m.Name = parseAiString(cmesh.mName)
meshes[i] = m
}
return meshes
}
func parseVec3(cv *C.struct_aiVector3D) gglm.Vec3 {
if cv == nil {
return gglm.Vec3{}
}
return gglm.Vec3{
Data: [3]float32{
float32(cv.x),
float32(cv.y),
float32(cv.z),
},
}
}
func parseAnimMeshes(cam **C.struct_aiAnimMesh, count uint) []*AnimMesh {
if cam == nil {
return []*AnimMesh{}
}
animMeshes := make([]*AnimMesh, count)
cAnimMeshes := unsafe.Slice(cam, count)
for i := 0; i < int(count); i++ {
m := cAnimMeshes[i]
animMeshes[i] = &AnimMesh{
Name: parseAiString(m.mName),
Vertices: parseVec3s(m.mVertices, uint(m.mNumVertices)),
Normals: parseVec3s(m.mNormals, uint(m.mNumVertices)),
Tangents: parseVec3s(m.mTangents, uint(m.mNumVertices)),
BitTangents: parseVec3s(m.mBitangents, uint(m.mNumVertices)),
Colors: parseColorSet(m.mColors, uint(m.mNumVertices)),
TexCoords: parseTexCoords(m.mTextureCoords, uint(m.mNumVertices)),
Weight: float32(m.mWeight),
}
}
return animMeshes
}
func parseTexCoords(ctc [MaxTexCoords]*C.struct_aiVector3D, vertCount uint) [MaxTexCoords][]gglm.Vec3 {
texCoords := [MaxTexCoords][]gglm.Vec3{}
for j := 0; j < len(ctc); j++ {
//If a color set isn't available then it is nil
if ctc[j] == nil {
continue
}
texCoords[j] = parseVec3s(ctc[j], vertCount)
}
return texCoords
}
func parseColorSet(cc [MaxColorSets]*C.struct_aiColor4D, vertCount uint) [MaxColorSets][]gglm.Vec4 {
colorSet := [MaxColorSets][]gglm.Vec4{}
for j := 0; j < len(cc); j++ {
//If a color set isn't available then it is nil
if cc[j] == nil {
continue
}
colorSet[j] = parseColors(cc[j], vertCount)
}
return colorSet
}
func parseBones(cbs **C.struct_aiBone, count uint) []*Bone {
if cbs == nil {
return []*Bone{}
}
bones := make([]*Bone, count)
cbones := unsafe.Slice(cbs, count)
for i := 0; i < int(count); i++ {
cBone := cbones[i]
bones[i] = &Bone{
Name: parseAiString(cBone.mName),
Weights: parseVertexWeights(cBone.mWeights, uint(cBone.mNumWeights)),
OffsetMatrix: parseMat4(&cBone.mOffsetMatrix),
}
}
return bones
}
func parseMat4(cm4 *C.struct_aiMatrix4x4) gglm.Mat4 {
if cm4 == nil {
return gglm.Mat4{}
}
return gglm.Mat4{
Data: [4][4]float32{
{float32(cm4.a1), float32(cm4.b1), float32(cm4.c1), float32(cm4.d1)},
{float32(cm4.a2), float32(cm4.b2), float32(cm4.c2), float32(cm4.d2)},
{float32(cm4.a3), float32(cm4.b3), float32(cm4.c3), float32(cm4.d3)},
{float32(cm4.a4), float32(cm4.b4), float32(cm4.c4), float32(cm4.d4)},
},
}
}
func parseVertexWeights(cWeights *C.struct_aiVertexWeight, count uint) []VertexWeight {
if cWeights == nil {
return []VertexWeight{}
}
vw := make([]VertexWeight, count)
cvw := unsafe.Slice(cWeights, count)
for i := 0; i < int(count); i++ {
vw[i] = VertexWeight{
VertIndex: uint(cvw[i].mVertexId),
Weight: float32(cvw[i].mWeight),
}
}
return vw
}
func parseAiString(aiString C.struct_aiString) string {
return C.GoStringN(&aiString.data[0], C.int(aiString.length))
}
func parseUInts(cui *C.uint, count uint) []uint {
if cui == nil {
return []uint{}
}
uints := make([]uint, count)
cUInts := unsafe.Slice(cui, count)
for i := 0; i < len(cUInts); i++ {
uints[i] = uint(cUInts[i])
}
return uints
}
func parseVec3s(cv *C.struct_aiVector3D, count uint) []gglm.Vec3 {
if cv == nil {
return []gglm.Vec3{}
}
carr := unsafe.Slice(cv, count)
verts := make([]gglm.Vec3, count)
for i := 0; i < int(count); i++ {
verts[i] = gglm.Vec3{
Data: [3]float32{
float32(carr[i].x),
float32(carr[i].y),
float32(carr[i].z),
},
}
}
return verts
}
func parseColors(cv *C.struct_aiColor4D, count uint) []gglm.Vec4 {
if cv == nil {
return []gglm.Vec4{}
}
carr := unsafe.Slice(cv, count)
verts := make([]gglm.Vec4, count)
for i := 0; i < int(count); i++ {
verts[i] = gglm.Vec4{
Data: [4]float32{
float32(carr[i].r),
float32(carr[i].g),
float32(carr[i].b),
float32(carr[i].a),
},
}
}
return verts
}
func parseMaterials(cMatsIn **C.struct_aiMaterial, count uint) []*Material {
mats := make([]*Material, count)
cMats := unsafe.Slice(cMatsIn, count)
for i := 0; i < int(count); i++ {
mats[i] = &Material{
cMat: cMats[i],
Properties: parseMatProperties(cMats[i].mProperties, uint(cMats[i].mNumProperties)),
AllocatedStorage: uint(cMats[i].mNumAllocated),
}
}
return mats
}
func parseMatProperties(cMatPropsIn **C.struct_aiMaterialProperty, count uint) []*MaterialProperty {
matProps := make([]*MaterialProperty, count)
cMatProps := unsafe.Slice(cMatPropsIn, count)
for i := 0; i < int(count); i++ {
cmp := cMatProps[i]
matProps[i] = &MaterialProperty{
name: parseAiString(cmp.mKey),
Semantic: TextureType(cmp.mSemantic),
Index: uint(cmp.mIndex),
TypeInfo: MatPropertyTypeInfo(cmp.mType),
Data: C.GoBytes(unsafe.Pointer(cmp.mData), C.int(cmp.mDataLength)),
}
}
return matProps
}