Implement RotByQuat and AngleVec3 and their tests

This commit is contained in:
bloeys
2022-12-06 04:26:10 +04:00
parent ed6806f23b
commit 4eb59e3386
3 changed files with 66 additions and 19 deletions

View File

@ -28,14 +28,14 @@ func Cross(v1, v2 *Vec3) *Vec3 {
} }
} }
//DistVec2 returns euclidean distance between v1 and v2 // DistVec2 returns euclidean distance between v1 and v2
func DistVec2(v1, v2 *Vec2) float32 { func DistVec2(v1, v2 *Vec2) float32 {
x := v1.X() - v2.X() x := v1.X() - v2.X()
y := v1.Y() - v2.Y() y := v1.Y() - v2.Y()
return float32(math.Sqrt(float64(x*x + y*y))) return float32(math.Sqrt(float64(x*x + y*y)))
} }
//DistVec3 returns euclidean distance between v1 and v2 // DistVec3 returns euclidean distance between v1 and v2
func DistVec3(v1, v2 *Vec3) float32 { func DistVec3(v1, v2 *Vec3) float32 {
x := v1.X() - v2.X() x := v1.X() - v2.X()
y := v1.Y() - v2.Y() y := v1.Y() - v2.Y()
@ -43,7 +43,7 @@ func DistVec3(v1, v2 *Vec3) float32 {
return float32(math.Sqrt(float64(x*x + y*y + z*z))) return float32(math.Sqrt(float64(x*x + y*y + z*z)))
} }
//DistVec4 returns euclidean distance between v1 and v2 // DistVec4 returns euclidean distance between v1 and v2
func DistVec4(v1, v2 *Vec4) float32 { func DistVec4(v1, v2 *Vec4) float32 {
//Using X() etc won't let the function inline //Using X() etc won't let the function inline
@ -54,14 +54,14 @@ func DistVec4(v1, v2 *Vec4) float32 {
return float32(math.Sqrt(float64(x*x + y*y + z*z + w*w))) return float32(math.Sqrt(float64(x*x + y*y + z*z + w*w)))
} }
//DistVec2 returns the squared euclidean distance between v1 and v2 (avoids a sqrt) // DistVec2 returns the squared euclidean distance between v1 and v2 (avoids a sqrt)
func SqrDistVec2(v1, v2 *Vec2) float32 { func SqrDistVec2(v1, v2 *Vec2) float32 {
x := v1.X() - v2.X() x := v1.X() - v2.X()
y := v1.Y() - v2.Y() y := v1.Y() - v2.Y()
return x*x + y*y return x*x + y*y
} }
//DistVec3 returns the squared euclidean distance between v1 and v2 (avoids a sqrt) // DistVec3 returns the squared euclidean distance between v1 and v2 (avoids a sqrt)
func SqrDistVec3(v1, v2 *Vec3) float32 { func SqrDistVec3(v1, v2 *Vec3) float32 {
x := v1.X() - v2.X() x := v1.X() - v2.X()
y := v1.Y() - v2.Y() y := v1.Y() - v2.Y()
@ -69,7 +69,7 @@ func SqrDistVec3(v1, v2 *Vec3) float32 {
return x*x + y*y + z*z return x*x + y*y + z*z
} }
//DistVec4 returns the squared euclidean distance between v1 and v2 (avoids a sqrt) // DistVec4 returns the squared euclidean distance between v1 and v2 (avoids a sqrt)
func SqrDistVec4(v1, v2 *Vec4) float32 { func SqrDistVec4(v1, v2 *Vec4) float32 {
x := v1.Data[0] - v2.Data[0] x := v1.Data[0] - v2.Data[0]
y := v1.Data[1] - v2.Data[1] y := v1.Data[1] - v2.Data[1]
@ -78,9 +78,9 @@ func SqrDistVec4(v1, v2 *Vec4) float32 {
return x*x + y*y + z*z + w*w return x*x + y*y + z*z + w*w
} }
//ReflectVec2 returns the reflected vector of the incoming vector 'v', and the surface normal 'n'. // ReflectVec2 returns the reflected vector of the incoming vector 'v', and the surface normal 'n'.
// //
//Note: n must be normalized or you will get wrong results // Note: n must be normalized or you will get wrong results
func ReflectVec2(v, n *Vec2) *Vec2 { func ReflectVec2(v, n *Vec2) *Vec2 {
//reflectedVec = v 2*dot(v, norm)*norm //reflectedVec = v 2*dot(v, norm)*norm
@ -94,9 +94,9 @@ func ReflectVec2(v, n *Vec2) *Vec2 {
} }
} }
//ReflectVec3 returns the reflected vector of the incoming vector 'v', and the surface normal 'n'. // ReflectVec3 returns the reflected vector of the incoming vector 'v', and the surface normal 'n'.
// //
//Note: n must be normalized or you will get wrong results // Note: n must be normalized or you will get wrong results
func ReflectVec3(v, n *Vec3) *Vec3 { func ReflectVec3(v, n *Vec3) *Vec3 {
//reflectedVec = v 2*dot(v, norm)*norm //reflectedVec = v 2*dot(v, norm)*norm
@ -111,7 +111,12 @@ func ReflectVec3(v, n *Vec3) *Vec3 {
} }
} }
//AngleQuat returns the angle between the two quaternions in radians // AngleVec3 returns the angle between the two vectors in radians
func AngleVec3(v1, v2 *Vec3) float32 {
return Acos32(DotVec3(v1, v2) / (v1.Mag() * v2.Mag()))
}
// AngleQuat returns the angle between the two quaternions in radians
func AngleQuat(q1, q2 *Quat) float32 { func AngleQuat(q1, q2 *Quat) float32 {
return Acos32(DotQuat(q1, q2)) return Acos32(DotQuat(q1, q2))
} }

View File

@ -132,7 +132,7 @@ func (v *Vec3) String() string {
return fmt.Sprintf("(%f, %f, %f)", v.X(), v.Y(), v.Z()) return fmt.Sprintf("(%f, %f, %f)", v.X(), v.Y(), v.Z())
} }
//Scale v *= x (element wise multiplication) // Scale v *= x (element wise multiplication)
func (v *Vec3) Scale(x float32) *Vec3 { func (v *Vec3) Scale(x float32) *Vec3 {
v.Data[0] *= x v.Data[0] *= x
v.Data[1] *= x v.Data[1] *= x
@ -148,7 +148,7 @@ func (v *Vec3) Add(v2 *Vec3) *Vec3 {
return v return v
} }
//SubVec3 v -= v2 // SubVec3 v -= v2
func (v *Vec3) Sub(v2 *Vec3) *Vec3 { func (v *Vec3) Sub(v2 *Vec3) *Vec3 {
v.Data[0] -= v2.X() v.Data[0] -= v2.X()
v.Data[1] -= v2.Y() v.Data[1] -= v2.Y()
@ -156,12 +156,12 @@ func (v *Vec3) Sub(v2 *Vec3) *Vec3 {
return v return v
} }
//Mag returns the magnitude of the vector // Mag returns the magnitude of the vector
func (v *Vec3) Mag() float32 { func (v *Vec3) Mag() float32 {
return float32(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z()))) return float32(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z())))
} }
//Mag returns the squared magnitude of the vector // Mag returns the squared magnitude of the vector
func (v *Vec3) SqrMag() float32 { func (v *Vec3) SqrMag() float32 {
return v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z() return v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z()
} }
@ -176,7 +176,7 @@ func (v *Vec3) Set(x, y, z float32) {
v.Data[2] = z v.Data[2] = z
} }
//Normalize normalizes this vector and returns it (doesn't copy) // Normalize normalizes this vector and returns it (doesn't copy)
func (v *Vec3) Normalize() *Vec3 { func (v *Vec3) Normalize() *Vec3 {
mag := float32(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z()))) mag := float32(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z())))
v.Data[0] /= mag v.Data[0] /= mag
@ -186,11 +186,30 @@ func (v *Vec3) Normalize() *Vec3 {
return v return v
} }
// RotByQuat rotates this vector by the given quaternion
func (v *Vec3) RotByQuat(q *Quat) *Vec3 {
// Reference: https://gamedev.stackexchange.com/questions/28395/rotating-vector3-by-a-quaternion
// u := NewVec3(q.X(), q.Y(), q.Z())
// t1 := 2.0f * dot(u, v) * u
// t2 := (s*s - dot(u, u)) * v
// t3 := 2.0f * s * cross(u, v);
// vprime = t1 + t2 + t3
u := NewVec3(q.X(), q.Y(), q.Z())
t1 := u.Clone().Scale(2 * DotVec3(u, v))
t2 := v.Clone().Scale(q.W()*q.W() - DotVec3(u, u))
t3 := Cross(u, v).Scale(2 * q.W())
v.Data = t1.Add(t2).Add(t3).Data
return v
}
func (v *Vec3) Clone() *Vec3 { func (v *Vec3) Clone() *Vec3 {
return &Vec3{Data: v.Data} return &Vec3{Data: v.Data}
} }
//AsRad returns a new vector with all values converted to Radians (i.e. multiplied by gglm.Deg2Rad) // AsRad returns a new vector with all values converted to Radians (i.e. multiplied by gglm.Deg2Rad)
func (v *Vec3) AsRad() *Vec3 { func (v *Vec3) AsRad() *Vec3 {
return &Vec3{ return &Vec3{
Data: [3]float32{ Data: [3]float32{
@ -201,7 +220,7 @@ func (v *Vec3) AsRad() *Vec3 {
} }
} }
//AddVec3 v3 = v1 + v2 // AddVec3 v3 = v1 + v2
func AddVec3(v1, v2 *Vec3) *Vec3 { func AddVec3(v1, v2 *Vec3) *Vec3 {
return &Vec3{ return &Vec3{
Data: [3]float32{ Data: [3]float32{
@ -212,7 +231,7 @@ func AddVec3(v1, v2 *Vec3) *Vec3 {
} }
} }
//SubVec3 v3 = v1 - v2 // SubVec3 v3 = v1 - v2
func SubVec3(v1, v2 *Vec3) *Vec3 { func SubVec3(v1, v2 *Vec3) *Vec3 {
return &Vec3{ return &Vec3{
Data: [3]float32{ Data: [3]float32{

View File

@ -191,6 +191,29 @@ func TestVecSwizzleSet(t *testing.T) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String()) t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
} }
// Test AngleVec3
v3 = gglm.NewVec3(1, 0, 0)
v32 := gglm.NewVec3(1, 0, 0)
angleV3 := gglm.AngleVec3(v3, v32) * gglm.Rad2Deg
if angleV3 != 0 {
t.Errorf("Got: %v; Expected: %v", v3.String(), 0)
}
v32.SetXY(0, 1)
angleV3 = gglm.AngleVec3(v3, v32) * gglm.Rad2Deg
if angleV3 != 90 {
t.Errorf("Got: %v; Expected: %v", v3.String(), 0)
}
// Test rot by quat
v32.SetXY(1, 0)
v32.RotByQuat(gglm.NewQuatAngleAxis(90*gglm.Deg2Rad, gglm.NewVec3(0, 1, 0)))
angleV3 = gglm.AngleVec3(v3, v32) * gglm.Rad2Deg
if angleV3 != 90 {
t.Errorf("Got: %v; Expected: %v", v3.String(), 0)
}
//Vec4 //Vec4
v4 := gglm.NewVec4(1, 1, 1, 1) v4 := gglm.NewVec4(1, 1, 1, 1)
ans4 := gglm.NewVec4(1, 2, 3, 4) ans4 := gglm.NewVec4(1, 2, 3, 4)