NewXYZ funcs for Quat+github workflows

This commit is contained in:
bloeys
2024-05-04 22:44:48 +04:00
parent afb3bbfe75
commit 5d2cfa0329
5 changed files with 74 additions and 45 deletions

21
.github/workflows/test-gglm.yml vendored Executable file
View File

@ -0,0 +1,21 @@
name: test-gglm
on:
create:
workflow_dispatch:
jobs:
test-gglm:
runs-on: [windows-latest, macos-latest, ubuntu-latest]
steps:
- name: Install golang
uses: actions/setup-go@v3
with:
go-version: ">=1.17"
- name: Clone gglm
run: git clone https://github.com/bloeys/gglm
- name: Test gglm
working-directory: nmage
run: cd gglm && go test ./... -v

View File

@ -47,36 +47,15 @@ func (q *Quat) Axis() Vec3 {
}} }}
} }
// Euler takes rotations in radians and produces a rotation that // NewQuatEulerVec takes rotations in radians and produces a rotation that
// rotates around the z-axis, y-axis and lastly x-axis. // rotates around the z-axis, y-axis and lastly x-axis.
func NewQuatEuler(v *Vec3) Quat { func NewQuatEulerVec(v *Vec3) Quat {
return NewQuatEuler(v.X(), v.Y(), v.Z())
//Some other common terminology: x=roll, y=pitch, z=yaw
sinX, cosX := Sincos32(v.Data[0] * 0.5)
sinY, cosY := Sincos32(v.Data[1] * 0.5)
sinZ, cosZ := Sincos32(v.Data[2] * 0.5)
//This produces a z->y->x multiply order, but its written as XYZ.
//This is due to XYZ meaning independent rotation matrices, so Z is applied
//first, then Y matrix and lastly X.
//See this for more info: https://github.com/godotengine/godot/issues/6816#issuecomment-254592170
//
//Note: On most conversion tools putting the multiply order (e.g. ZYX for us) is required.
return Quat{
Vec4: Vec4{
Data: [4]float32{
sinX*cosY*cosZ - cosX*sinY*sinZ,
cosX*sinY*cosZ + sinX*cosY*sinZ,
cosX*cosY*sinZ - sinX*sinY*cosZ,
cosX*cosY*cosZ + sinX*sinY*sinZ,
},
},
}
} }
// Euler takes rotations in radians and produces a rotation that // NewQuatEuler takes rotations in radians and produces a rotation that
// rotates around the z-axis, y-axis and lastly x-axis. // rotates around the z-axis, y-axis and lastly x-axis.
func NewQuatEulerXYZ(x, y, z float32) Quat { func NewQuatEuler(x, y, z float32) Quat {
//Some other common terminology: x=roll, y=pitch, z=yaw //Some other common terminology: x=roll, y=pitch, z=yaw
sinX, cosX := Sincos32(x * 0.5) sinX, cosX := Sincos32(x * 0.5)
@ -101,16 +80,21 @@ func NewQuatEulerXYZ(x, y, z float32) Quat {
} }
} }
// NewQuatAngleAxisVec produces a quaternion thats rotates rotRad radians around the *normalized* vector rotAxisNorm
func NewQuatAngleAxisVec(rotRad float32, rotAxisNorm *Vec3) Quat {
return NewQuatAngleAxis(rotRad, rotAxisNorm.X(), rotAxisNorm.Y(), rotAxisNorm.Z())
}
// NewQuatAngleAxis produces a quaternion thats rotates rotRad radians around the *normalized* vector rotAxisNorm // NewQuatAngleAxis produces a quaternion thats rotates rotRad radians around the *normalized* vector rotAxisNorm
func NewQuatAngleAxis(rotRad float32, rotAxisNorm *Vec3) Quat { func NewQuatAngleAxis(rotRad float32, rotAxisNormX, rotAxisNormY, rotAxisNormZ float32) Quat {
s, c := Sincos32(rotRad * 0.5) s, c := Sincos32(rotRad * 0.5)
return Quat{ return Quat{
Vec4: Vec4{ Vec4: Vec4{
Data: [4]float32{ Data: [4]float32{
rotAxisNorm.Data[0] * s, rotAxisNormX * s,
rotAxisNorm.Data[1] * s, rotAxisNormY * s,
rotAxisNorm.Data[2] * s, rotAxisNormZ * s,
c, c,
}, },
}, },
@ -124,3 +108,27 @@ func NewQuatId() Quat {
}, },
} }
} }
func NewQuat(x, y, z, w float32) Quat {
return Quat{
Vec4: Vec4{
Data: [4]float32{x, y, z, w},
},
}
}
func NewQuatArr(arr [4]float32) Quat {
return Quat{
Vec4: Vec4{
Data: arr,
},
}
}
func NewQuatVec(v *Vec4) Quat {
return Quat{
Vec4: Vec4{
Data: v.Data,
},
}
}

View File

@ -10,14 +10,14 @@ func TestNewQuatEuler(t *testing.T) {
degs := gglm.NewVec3(180, 180, 180) degs := gglm.NewVec3(180, 180, 180)
degs.Data = degs.AsRad().Data degs.Data = degs.AsRad().Data
q := gglm.NewQuatEuler(&degs) q := gglm.NewQuatEulerVec(&degs)
ans := &gglm.Quat{Vec4: gglm.NewVec4(0, 0, 0, 1)} ans := &gglm.Quat{Vec4: gglm.NewVec4(0, 0, 0, 1)}
if !gglm.EqF32(q.X(), ans.X()) || !gglm.EqF32(q.Y(), ans.Y()) || !gglm.EqF32(q.Z(), ans.Z()) || !gglm.EqF32(q.W(), ans.W()) { if !gglm.EqF32(q.X(), ans.X()) || !gglm.EqF32(q.Y(), ans.Y()) || !gglm.EqF32(q.Z(), ans.Z()) || !gglm.EqF32(q.W(), ans.W()) {
t.Errorf("Got: %v; Expected: %v", q.String(), ans.String()) t.Errorf("Got: %v; Expected: %v", q.String(), ans.String())
} }
q = gglm.NewQuatEulerXYZ(180*gglm.Deg2Rad, 180*gglm.Deg2Rad, 180*gglm.Deg2Rad) q = gglm.NewQuatEuler(180*gglm.Deg2Rad, 180*gglm.Deg2Rad, 180*gglm.Deg2Rad)
if !gglm.EqF32(q.X(), ans.X()) || !gglm.EqF32(q.Y(), ans.Y()) || !gglm.EqF32(q.Z(), ans.Z()) || !gglm.EqF32(q.W(), ans.W()) { if !gglm.EqF32(q.X(), ans.X()) || !gglm.EqF32(q.Y(), ans.Y()) || !gglm.EqF32(q.Z(), ans.Z()) || !gglm.EqF32(q.W(), ans.W()) {
t.Errorf("Got: %v; Expected: %v", q.String(), ans.String()) t.Errorf("Got: %v; Expected: %v", q.String(), ans.String())
@ -27,7 +27,7 @@ func TestNewQuatEuler(t *testing.T) {
func TestNewQuatAngleAxis(t *testing.T) { func TestNewQuatAngleAxis(t *testing.T) {
rotAxis := gglm.NewVec3(0, 1, 0) rotAxis := gglm.NewVec3(0, 1, 0)
q := gglm.NewQuatAngleAxis(180*gglm.Deg2Rad, &rotAxis) q := gglm.NewQuatAngleAxisVec(180*gglm.Deg2Rad, &rotAxis)
ans := &gglm.Quat{Vec4: gglm.NewVec4(0, 1, 0, 0)} ans := &gglm.Quat{Vec4: gglm.NewVec4(0, 1, 0, 0)}
if !gglm.EqF32(q.X(), ans.X()) || !gglm.EqF32(q.Y(), ans.Y()) || !gglm.EqF32(q.Z(), ans.Z()) || !gglm.EqF32(q.W(), ans.W()) { if !gglm.EqF32(q.X(), ans.X()) || !gglm.EqF32(q.Y(), ans.Y()) || !gglm.EqF32(q.Z(), ans.Z()) || !gglm.EqF32(q.W(), ans.W()) {
@ -38,7 +38,7 @@ func TestNewQuatAngleAxis(t *testing.T) {
func TestQuatAngle(t *testing.T) { func TestQuatAngle(t *testing.T) {
rotAxis := gglm.NewVec3(0, 1, 0) rotAxis := gglm.NewVec3(0, 1, 0)
quat := gglm.NewQuatAngleAxis(180*gglm.Deg2Rad, &rotAxis) quat := gglm.NewQuatAngleAxisVec(180*gglm.Deg2Rad, &rotAxis)
a := quat.Angle() a := quat.Angle()
var ans float32 = 180.0 * gglm.Deg2Rad var ans float32 = 180.0 * gglm.Deg2Rad
@ -47,7 +47,7 @@ func TestQuatAngle(t *testing.T) {
} }
rotAxis = gglm.NewVec3(1, 1, 0) rotAxis = gglm.NewVec3(1, 1, 0)
quat = gglm.NewQuatAngleAxis(90*gglm.Deg2Rad, rotAxis.Normalize()) quat = gglm.NewQuatAngleAxisVec(90*gglm.Deg2Rad, rotAxis.Normalize())
a = quat.Angle() a = quat.Angle()
ans = 90 * gglm.Deg2Rad ans = 90 * gglm.Deg2Rad
@ -56,7 +56,7 @@ func TestQuatAngle(t *testing.T) {
} }
rotAxis = gglm.NewVec3(1, 1, 0) rotAxis = gglm.NewVec3(1, 1, 0)
quat = gglm.NewQuatAngleAxis(125*gglm.Deg2Rad, rotAxis.Normalize()) quat = gglm.NewQuatAngleAxisVec(125*gglm.Deg2Rad, rotAxis.Normalize())
a = quat.Angle() a = quat.Angle()
ans = 125 * gglm.Deg2Rad ans = 125 * gglm.Deg2Rad
@ -68,7 +68,7 @@ func TestQuatAngle(t *testing.T) {
func TestQuatAxis(t *testing.T) { func TestQuatAxis(t *testing.T) {
rotAxis := gglm.NewVec3(0, 1, 0) rotAxis := gglm.NewVec3(0, 1, 0)
quat := gglm.NewQuatAngleAxis(1, &rotAxis) quat := gglm.NewQuatAngleAxisVec(1, &rotAxis)
a := quat.Axis() a := quat.Axis()
ans := gglm.NewVec3(0, 1, 0) ans := gglm.NewVec3(0, 1, 0)
@ -77,7 +77,7 @@ func TestQuatAxis(t *testing.T) {
} }
rotAxis = gglm.NewVec3(1, 1, 0) rotAxis = gglm.NewVec3(1, 1, 0)
quat = gglm.NewQuatAngleAxis(1, rotAxis.Normalize()) quat = gglm.NewQuatAngleAxisVec(1, rotAxis.Normalize())
a = quat.Axis() a = quat.Axis()
ans = gglm.NewVec3(1, 1, 0) ans = gglm.NewVec3(1, 1, 0)
ans.Normalize() ans.Normalize()
@ -87,7 +87,7 @@ func TestQuatAxis(t *testing.T) {
} }
rotAxis = gglm.NewVec3(67, 46, 32) rotAxis = gglm.NewVec3(67, 46, 32)
quat = gglm.NewQuatAngleAxis(1, rotAxis.Normalize()) quat = gglm.NewQuatAngleAxisVec(1, rotAxis.Normalize())
a = quat.Axis() a = quat.Axis()
ans = gglm.NewVec3(67, 46, 32) ans = gglm.NewVec3(67, 46, 32)
ans.Normalize() ans.Normalize()

View File

@ -209,7 +209,7 @@ func TestVecSwizzleSet(t *testing.T) {
// Test rot by quat // Test rot by quat
v32.SetXY(1, 0) v32.SetXY(1, 0)
rotAxis := gglm.NewVec3(0, 1, 0) rotAxis := gglm.NewVec3(0, 1, 0)
quat := gglm.NewQuatAngleAxis(90*gglm.Deg2Rad, &rotAxis) quat := gglm.NewQuatAngleAxisVec(90*gglm.Deg2Rad, &rotAxis)
v32.RotByQuat(&quat) v32.RotByQuat(&quat)
angleV3 = gglm.AngleVec3(&v3, &v32) * gglm.Rad2Deg angleV3 = gglm.AngleVec3(&v3, &v32) * gglm.Rad2Deg
if angleV3 != 90 { if angleV3 != 90 {

10
main.go
View File

@ -143,11 +143,11 @@ func main() {
// Quaternion // Quaternion
vRot := &gglm.Vec3{Data: [3]float32{60, 30, 20}} vRot := &gglm.Vec3{Data: [3]float32{60, 30, 20}}
q := gglm.NewQuatEuler(vRot.AsRad()) q := gglm.NewQuatEulerVec(vRot.AsRad())
println("\n" + vRot.AsRad().String()) println("\n" + vRot.AsRad().String())
println(q.String(), "\n", q.Mag()) println(q.String(), "\n", q.Mag())
q = gglm.NewQuatAngleAxis(60*gglm.Deg2Rad, vRot.Normalize()) q = gglm.NewQuatAngleAxisVec(60*gglm.Deg2Rad, vRot.Normalize())
println("\n" + vRot.Normalize().String()) println("\n" + vRot.Normalize().String())
println(q.String()) println(q.String())
@ -155,7 +155,7 @@ func main() {
translationMat := gglm.NewTranslationMat(&gglm.Vec3{Data: [3]float32{1, 2, 3}}) translationMat := gglm.NewTranslationMat(&gglm.Vec3{Data: [3]float32{1, 2, 3}})
rotDegs := gglm.NewVec3(60, 30, 20) rotDegs := gglm.NewVec3(60, 30, 20)
quat := gglm.NewQuatEuler(rotDegs.AsRad()) quat := gglm.NewQuatEulerVec(rotDegs.AsRad())
rotMat := gglm.NewRotMat(&quat) rotMat := gglm.NewRotMat(&quat)
scale := gglm.NewVec3(1, 1, 1) scale := gglm.NewVec3(1, 1, 1)
@ -186,10 +186,10 @@ func main() {
// Quat geo // Quat geo
q1Degs := gglm.NewVec3(180*gglm.Deg2Rad, 0, 0) q1Degs := gglm.NewVec3(180*gglm.Deg2Rad, 0, 0)
q1 := gglm.NewQuatEuler(&q1Degs) q1 := gglm.NewQuatEulerVec(&q1Degs)
q2Degs := gglm.NewVec3(0, 180*gglm.Deg2Rad, 0) q2Degs := gglm.NewVec3(0, 180*gglm.Deg2Rad, 0)
q2 := gglm.NewQuatEuler(&q2Degs) q2 := gglm.NewQuatEulerVec(&q2Degs)
println(gglm.AngleQuat(&q1, &q2) * gglm.Rad2Deg) println(gglm.AngleQuat(&q1, &q2) * gglm.Rad2Deg)
// LookAt // LookAt