3 Commits

9 changed files with 589 additions and 12 deletions

View File

@ -180,3 +180,39 @@ func NewMat2Id() *Mat2 {
},
}
}
func NewMat2Diag(diagVal float32) *Mat2 {
return &Mat2{
Data: [2][2]float32{
{diagVal, 0},
{0, diagVal},
},
}
}
func NewMat2DiagArr(diag [2]float32) *Mat2 {
return &Mat2{
Data: [2][2]float32{
{diag[0], 0},
{0, diag[1]},
},
}
}
func NewMat2Vec2(col0, col1 *Vec2) *Mat2 {
return &Mat2{
Data: [2][2]float32{
col0.Data,
col1.Data,
},
}
}
func NewMat2Arr(col0, col1 [2]float32) *Mat2 {
return &Mat2{
Data: [2][2]float32{
col0,
col1,
},
}
}

View File

@ -201,7 +201,7 @@ func TestDeterminantMat2(t *testing.T) {
}
}
func TestInverseMat2(t *testing.T) {
func TestInvertMat2(t *testing.T) {
m := gglm.NewMat2Id()
ans := gglm.NewMat2Id()

View File

@ -167,16 +167,6 @@ func (m *Mat3) Invert() *Mat3 {
inverseDet := 1 / (x + y + z)
// Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDeterminant;
// Inverse[1][0] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDeterminant;
// Inverse[2][0] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDeterminant;
// Inverse[0][1] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDeterminant;
// Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDeterminant;
// Inverse[2][1] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDeterminant;
// Inverse[0][2] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDeterminant;
// Inverse[1][2] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDeterminant;
// Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDeterminant;
m.Data = [3][3]float32{
// Col0
{
@ -203,6 +193,17 @@ func (m *Mat3) Invert() *Mat3 {
return m
}
// ToMat2 returns a Mat2 that contains the top-left 2x2 section of the Mat3.
// That is, column 2 and row 2 are dropped.
func (m *Mat3) ToMat2() Mat2 {
return Mat2{
Data: [2][2]float32{
{m.Data[0][0], m.Data[0][1]},
{m.Data[1][0], m.Data[1][1]},
},
}
}
// AddMat3 m3 = m1 + m2
func AddMat3(m1, m2 *Mat3) *Mat3 {
return &Mat3{
@ -306,3 +307,43 @@ func NewMat3Id() *Mat3 {
},
}
}
func NewMat3Diag(diagVal float32) *Mat3 {
return &Mat3{
Data: [3][3]float32{
{diagVal, 0, 0},
{0, diagVal, 0},
{0, 0, diagVal},
},
}
}
func NewMat3DiagArr(diag [3]float32) *Mat3 {
return &Mat3{
Data: [3][3]float32{
{diag[0], 0, 0},
{0, diag[1], 0},
{0, 0, diag[2]},
},
}
}
func NewMat3Vec3(col0, col1, col2 *Vec3) *Mat3 {
return &Mat3{
Data: [3][3]float32{
col0.Data,
col1.Data,
col2.Data,
},
}
}
func NewMat3Arr(col0, col1, col2 [3]float32) *Mat3 {
return &Mat3{
Data: [3][3]float32{
col0,
col1,
col2,
},
}
}

View File

@ -219,7 +219,7 @@ func TestDeterminantMat3(t *testing.T) {
}
}
func TestInverseMat3(t *testing.T) {
func TestInvertMat3(t *testing.T) {
m := gglm.NewMat3Id()
ans := gglm.NewMat3Id()

View File

@ -192,6 +192,308 @@ func (m *Mat4) Transpose() *Mat4 {
return m
}
func (m *Mat4) Determinant() float32 {
// Many thanks to the C++ GLM project here :)
coef00 := m.Data[2][2]*m.Data[3][3] - m.Data[3][2]*m.Data[2][3]
coef02 := m.Data[1][2]*m.Data[3][3] - m.Data[3][2]*m.Data[1][3]
coef03 := m.Data[1][2]*m.Data[2][3] - m.Data[2][2]*m.Data[1][3]
coef04 := m.Data[2][1]*m.Data[3][3] - m.Data[3][1]*m.Data[2][3]
coef06 := m.Data[1][1]*m.Data[3][3] - m.Data[3][1]*m.Data[1][3]
coef07 := m.Data[1][1]*m.Data[2][3] - m.Data[2][1]*m.Data[1][3]
coef08 := m.Data[2][1]*m.Data[3][2] - m.Data[3][1]*m.Data[2][2]
coef10 := m.Data[1][1]*m.Data[3][2] - m.Data[3][1]*m.Data[1][2]
coef11 := m.Data[1][1]*m.Data[2][2] - m.Data[2][1]*m.Data[1][2]
coef12 := m.Data[2][0]*m.Data[3][3] - m.Data[3][0]*m.Data[2][3]
coef14 := m.Data[1][0]*m.Data[3][3] - m.Data[3][0]*m.Data[1][3]
coef15 := m.Data[1][0]*m.Data[2][3] - m.Data[2][0]*m.Data[1][3]
coef16 := m.Data[2][0]*m.Data[3][2] - m.Data[3][0]*m.Data[2][2]
coef18 := m.Data[1][0]*m.Data[3][2] - m.Data[3][0]*m.Data[1][2]
coef19 := m.Data[1][0]*m.Data[2][2] - m.Data[2][0]*m.Data[1][2]
coef20 := m.Data[2][0]*m.Data[3][1] - m.Data[3][0]*m.Data[2][1]
coef22 := m.Data[1][0]*m.Data[3][1] - m.Data[3][0]*m.Data[1][1]
coef23 := m.Data[1][0]*m.Data[2][1] - m.Data[2][0]*m.Data[1][1]
fac0 := NewVec4(coef00, coef00, coef02, coef03)
fac1 := NewVec4(coef04, coef04, coef06, coef07)
fac2 := NewVec4(coef08, coef08, coef10, coef11)
fac3 := NewVec4(coef12, coef12, coef14, coef15)
fac4 := NewVec4(coef16, coef16, coef18, coef19)
fac5 := NewVec4(coef20, coef20, coef22, coef23)
vec0 := NewVec4(m.Data[1][0], m.Data[0][0], m.Data[0][0], m.Data[0][0])
vec1 := NewVec4(m.Data[1][1], m.Data[0][1], m.Data[0][1], m.Data[0][1])
vec2 := NewVec4(m.Data[1][2], m.Data[0][2], m.Data[0][2], m.Data[0][2])
vec3 := NewVec4(m.Data[1][3], m.Data[0][3], m.Data[0][3], m.Data[0][3])
inv0 := NewVec4(
vec1.X()*fac0.X()-vec2.X()*fac1.X()+vec3.X()*fac2.X(),
vec1.Y()*fac0.Y()-vec2.Y()*fac1.Y()+vec3.Y()*fac2.Y(),
vec1.Z()*fac0.Z()-vec2.Z()*fac1.Z()+vec3.Z()*fac2.Z(),
vec1.W()*fac0.W()-vec2.W()*fac1.W()+vec3.W()*fac2.W(),
)
inv1 := NewVec4(
vec0.X()*fac0.X()-vec2.X()*fac3.X()+vec3.X()*fac4.X(),
vec0.Y()*fac0.Y()-vec2.Y()*fac3.Y()+vec3.Y()*fac4.Y(),
vec0.Z()*fac0.Z()-vec2.Z()*fac3.Z()+vec3.Z()*fac4.Z(),
vec0.W()*fac0.W()-vec2.W()*fac3.W()+vec3.W()*fac4.W(),
)
inv2 := NewVec4(
vec0.X()*fac1.X()-vec1.X()*fac3.X()+vec3.X()*fac5.X(),
vec0.Y()*fac1.Y()-vec1.Y()*fac3.Y()+vec3.Y()*fac5.Y(),
vec0.Z()*fac1.Z()-vec1.Z()*fac3.Z()+vec3.Z()*fac5.Z(),
vec0.W()*fac1.W()-vec1.W()*fac3.W()+vec3.W()*fac5.W(),
)
inv3 := NewVec4(
vec0.X()*fac2.X()-vec1.X()*fac4.X()+vec2.X()*fac5.X(),
vec0.Y()*fac2.Y()-vec1.Y()*fac4.Y()+vec2.Y()*fac5.Y(),
vec0.Z()*fac2.Z()-vec1.Z()*fac4.Z()+vec2.Z()*fac5.Z(),
vec0.W()*fac2.W()-vec1.W()*fac4.W()+vec2.W()*fac5.W(),
)
signA := NewVec4(+1, -1, +1, -1)
signB := NewVec4(-1, +1, -1, +1)
inverse := NewMat4Arr(
inv0.ScaleVec(signA).Data,
inv1.ScaleVec(signB).Data,
inv2.ScaleVec(signA).Data,
inv3.ScaleVec(signB).Data,
)
row0 := NewVec4(inverse.Data[0][0], inverse.Data[1][0], inverse.Data[2][0], inverse.Data[3][0])
dot0 := NewVec4Arr(row0.ScaleArr(m.Data[0]).Data)
det := (dot0.X() + dot0.Y()) + (dot0.Z() + dot0.W())
return det
}
// Invert inverts this matrix.
//
// Note that the inverse is not defined if the determinant is zero or extremely small.
// In the case the determinant is zero the matrix will (usually) get filled with infinities
func (m *Mat4) Invert() *Mat4 {
// Many thanks to the C++ GLM project here :)
coef00 := m.Data[2][2]*m.Data[3][3] - m.Data[3][2]*m.Data[2][3]
coef02 := m.Data[1][2]*m.Data[3][3] - m.Data[3][2]*m.Data[1][3]
coef03 := m.Data[1][2]*m.Data[2][3] - m.Data[2][2]*m.Data[1][3]
coef04 := m.Data[2][1]*m.Data[3][3] - m.Data[3][1]*m.Data[2][3]
coef06 := m.Data[1][1]*m.Data[3][3] - m.Data[3][1]*m.Data[1][3]
coef07 := m.Data[1][1]*m.Data[2][3] - m.Data[2][1]*m.Data[1][3]
coef08 := m.Data[2][1]*m.Data[3][2] - m.Data[3][1]*m.Data[2][2]
coef10 := m.Data[1][1]*m.Data[3][2] - m.Data[3][1]*m.Data[1][2]
coef11 := m.Data[1][1]*m.Data[2][2] - m.Data[2][1]*m.Data[1][2]
coef12 := m.Data[2][0]*m.Data[3][3] - m.Data[3][0]*m.Data[2][3]
coef14 := m.Data[1][0]*m.Data[3][3] - m.Data[3][0]*m.Data[1][3]
coef15 := m.Data[1][0]*m.Data[2][3] - m.Data[2][0]*m.Data[1][3]
coef16 := m.Data[2][0]*m.Data[3][2] - m.Data[3][0]*m.Data[2][2]
coef18 := m.Data[1][0]*m.Data[3][2] - m.Data[3][0]*m.Data[1][2]
coef19 := m.Data[1][0]*m.Data[2][2] - m.Data[2][0]*m.Data[1][2]
coef20 := m.Data[2][0]*m.Data[3][1] - m.Data[3][0]*m.Data[2][1]
coef22 := m.Data[1][0]*m.Data[3][1] - m.Data[3][0]*m.Data[1][1]
coef23 := m.Data[1][0]*m.Data[2][1] - m.Data[2][0]*m.Data[1][1]
fac0 := NewVec4(coef00, coef00, coef02, coef03)
fac1 := NewVec4(coef04, coef04, coef06, coef07)
fac2 := NewVec4(coef08, coef08, coef10, coef11)
fac3 := NewVec4(coef12, coef12, coef14, coef15)
fac4 := NewVec4(coef16, coef16, coef18, coef19)
fac5 := NewVec4(coef20, coef20, coef22, coef23)
vec0 := NewVec4(m.Data[1][0], m.Data[0][0], m.Data[0][0], m.Data[0][0])
vec1 := NewVec4(m.Data[1][1], m.Data[0][1], m.Data[0][1], m.Data[0][1])
vec2 := NewVec4(m.Data[1][2], m.Data[0][2], m.Data[0][2], m.Data[0][2])
vec3 := NewVec4(m.Data[1][3], m.Data[0][3], m.Data[0][3], m.Data[0][3])
inv0 := NewVec4(
vec1.X()*fac0.X()-vec2.X()*fac1.X()+vec3.X()*fac2.X(),
vec1.Y()*fac0.Y()-vec2.Y()*fac1.Y()+vec3.Y()*fac2.Y(),
vec1.Z()*fac0.Z()-vec2.Z()*fac1.Z()+vec3.Z()*fac2.Z(),
vec1.W()*fac0.W()-vec2.W()*fac1.W()+vec3.W()*fac2.W(),
)
inv1 := NewVec4(
vec0.X()*fac0.X()-vec2.X()*fac3.X()+vec3.X()*fac4.X(),
vec0.Y()*fac0.Y()-vec2.Y()*fac3.Y()+vec3.Y()*fac4.Y(),
vec0.Z()*fac0.Z()-vec2.Z()*fac3.Z()+vec3.Z()*fac4.Z(),
vec0.W()*fac0.W()-vec2.W()*fac3.W()+vec3.W()*fac4.W(),
)
inv2 := NewVec4(
vec0.X()*fac1.X()-vec1.X()*fac3.X()+vec3.X()*fac5.X(),
vec0.Y()*fac1.Y()-vec1.Y()*fac3.Y()+vec3.Y()*fac5.Y(),
vec0.Z()*fac1.Z()-vec1.Z()*fac3.Z()+vec3.Z()*fac5.Z(),
vec0.W()*fac1.W()-vec1.W()*fac3.W()+vec3.W()*fac5.W(),
)
inv3 := NewVec4(
vec0.X()*fac2.X()-vec1.X()*fac4.X()+vec2.X()*fac5.X(),
vec0.Y()*fac2.Y()-vec1.Y()*fac4.Y()+vec2.Y()*fac5.Y(),
vec0.Z()*fac2.Z()-vec1.Z()*fac4.Z()+vec2.Z()*fac5.Z(),
vec0.W()*fac2.W()-vec1.W()*fac4.W()+vec2.W()*fac5.W(),
)
signA := NewVec4(+1, -1, +1, -1)
signB := NewVec4(-1, +1, -1, +1)
inverse := NewMat4Arr(
inv0.ScaleVec(signA).Data,
inv1.ScaleVec(signB).Data,
inv2.ScaleVec(signA).Data,
inv3.ScaleVec(signB).Data,
)
row0 := NewVec4(inverse.Data[0][0], inverse.Data[1][0], inverse.Data[2][0], inverse.Data[3][0])
dot0 := NewVec4Arr(row0.ScaleArr(m.Data[0]).Data)
det := (dot0.X() + dot0.Y()) + (dot0.Z() + dot0.W())
inverseDet := 1.0 / det
m.Data = inverse.Scale(inverseDet).Data
return m
}
// InvertAndTranspose is equivalent to m.Invert().Transpose(), that is invert first, then transpose the inverted matrix.
//
// This function is provided as a convenience and as a small optimization, as it inlines the invert and transpose functions which means we only
// have 1 function call.
//
// Additionally, the inverse of the matrix is written to the matrix immediately transposed instead of writing the inverse and then transposing it in a second operation.
func (m *Mat4) InvertAndTranspose() *Mat4 {
// Many thanks to the C++ GLM project here :)
coef00 := m.Data[2][2]*m.Data[3][3] - m.Data[3][2]*m.Data[2][3]
coef02 := m.Data[1][2]*m.Data[3][3] - m.Data[3][2]*m.Data[1][3]
coef03 := m.Data[1][2]*m.Data[2][3] - m.Data[2][2]*m.Data[1][3]
coef04 := m.Data[2][1]*m.Data[3][3] - m.Data[3][1]*m.Data[2][3]
coef06 := m.Data[1][1]*m.Data[3][3] - m.Data[3][1]*m.Data[1][3]
coef07 := m.Data[1][1]*m.Data[2][3] - m.Data[2][1]*m.Data[1][3]
coef08 := m.Data[2][1]*m.Data[3][2] - m.Data[3][1]*m.Data[2][2]
coef10 := m.Data[1][1]*m.Data[3][2] - m.Data[3][1]*m.Data[1][2]
coef11 := m.Data[1][1]*m.Data[2][2] - m.Data[2][1]*m.Data[1][2]
coef12 := m.Data[2][0]*m.Data[3][3] - m.Data[3][0]*m.Data[2][3]
coef14 := m.Data[1][0]*m.Data[3][3] - m.Data[3][0]*m.Data[1][3]
coef15 := m.Data[1][0]*m.Data[2][3] - m.Data[2][0]*m.Data[1][3]
coef16 := m.Data[2][0]*m.Data[3][2] - m.Data[3][0]*m.Data[2][2]
coef18 := m.Data[1][0]*m.Data[3][2] - m.Data[3][0]*m.Data[1][2]
coef19 := m.Data[1][0]*m.Data[2][2] - m.Data[2][0]*m.Data[1][2]
coef20 := m.Data[2][0]*m.Data[3][1] - m.Data[3][0]*m.Data[2][1]
coef22 := m.Data[1][0]*m.Data[3][1] - m.Data[3][0]*m.Data[1][1]
coef23 := m.Data[1][0]*m.Data[2][1] - m.Data[2][0]*m.Data[1][1]
fac0 := NewVec4(coef00, coef00, coef02, coef03)
fac1 := NewVec4(coef04, coef04, coef06, coef07)
fac2 := NewVec4(coef08, coef08, coef10, coef11)
fac3 := NewVec4(coef12, coef12, coef14, coef15)
fac4 := NewVec4(coef16, coef16, coef18, coef19)
fac5 := NewVec4(coef20, coef20, coef22, coef23)
vec0 := NewVec4(m.Data[1][0], m.Data[0][0], m.Data[0][0], m.Data[0][0])
vec1 := NewVec4(m.Data[1][1], m.Data[0][1], m.Data[0][1], m.Data[0][1])
vec2 := NewVec4(m.Data[1][2], m.Data[0][2], m.Data[0][2], m.Data[0][2])
vec3 := NewVec4(m.Data[1][3], m.Data[0][3], m.Data[0][3], m.Data[0][3])
inv0 := NewVec4(
vec1.X()*fac0.X()-vec2.X()*fac1.X()+vec3.X()*fac2.X(),
vec1.Y()*fac0.Y()-vec2.Y()*fac1.Y()+vec3.Y()*fac2.Y(),
vec1.Z()*fac0.Z()-vec2.Z()*fac1.Z()+vec3.Z()*fac2.Z(),
vec1.W()*fac0.W()-vec2.W()*fac1.W()+vec3.W()*fac2.W(),
)
inv1 := NewVec4(
vec0.X()*fac0.X()-vec2.X()*fac3.X()+vec3.X()*fac4.X(),
vec0.Y()*fac0.Y()-vec2.Y()*fac3.Y()+vec3.Y()*fac4.Y(),
vec0.Z()*fac0.Z()-vec2.Z()*fac3.Z()+vec3.Z()*fac4.Z(),
vec0.W()*fac0.W()-vec2.W()*fac3.W()+vec3.W()*fac4.W(),
)
inv2 := NewVec4(
vec0.X()*fac1.X()-vec1.X()*fac3.X()+vec3.X()*fac5.X(),
vec0.Y()*fac1.Y()-vec1.Y()*fac3.Y()+vec3.Y()*fac5.Y(),
vec0.Z()*fac1.Z()-vec1.Z()*fac3.Z()+vec3.Z()*fac5.Z(),
vec0.W()*fac1.W()-vec1.W()*fac3.W()+vec3.W()*fac5.W(),
)
inv3 := NewVec4(
vec0.X()*fac2.X()-vec1.X()*fac4.X()+vec2.X()*fac5.X(),
vec0.Y()*fac2.Y()-vec1.Y()*fac4.Y()+vec2.Y()*fac5.Y(),
vec0.Z()*fac2.Z()-vec1.Z()*fac4.Z()+vec2.Z()*fac5.Z(),
vec0.W()*fac2.W()-vec1.W()*fac4.W()+vec2.W()*fac5.W(),
)
signA := NewVec4(+1, -1, +1, -1)
signB := NewVec4(-1, +1, -1, +1)
inverse := NewMat4Arr(
inv0.ScaleVec(signA).Data,
inv1.ScaleVec(signB).Data,
inv2.ScaleVec(signA).Data,
inv3.ScaleVec(signB).Data,
)
row0 := NewVec4(inverse.Data[0][0], inverse.Data[1][0], inverse.Data[2][0], inverse.Data[3][0])
dot0 := NewVec4Arr(row0.ScaleArr(m.Data[0]).Data)
det := (dot0.X() + dot0.Y()) + (dot0.Z() + dot0.W())
inverseDet := 1.0 / det
inverse.Scale(inverseDet)
// Manually inline transpose
m.Data = [4][4]float32{
{inverse.Data[0][0], inverse.Data[1][0], inverse.Data[2][0], inverse.Data[3][0]},
{inverse.Data[0][1], inverse.Data[1][1], inverse.Data[2][1], inverse.Data[3][1]},
{inverse.Data[0][2], inverse.Data[1][2], inverse.Data[2][2], inverse.Data[3][2]},
{inverse.Data[0][3], inverse.Data[1][3], inverse.Data[2][3], inverse.Data[3][3]},
}
return m
}
// ToMat2 returns a Mat2 that contains the top-left 2x2 section of the Mat4.
// That is, columns 2 and 3, and rows 2 and 3, are dropped.
func (m *Mat4) ToMat2() Mat2 {
return Mat2{
Data: [2][2]float32{
{m.Data[0][0], m.Data[0][1]},
{m.Data[1][0], m.Data[1][1]},
},
}
}
// ToMat3 returns a Mat3 that contains the top-left 3x3 section of the Mat4.
// That is, column 3 and row 3 are dropped.
func (m *Mat4) ToMat3() Mat3 {
return Mat3{
Data: [3][3]float32{
{m.Data[0][0], m.Data[0][1], m.Data[0][2]},
{m.Data[1][0], m.Data[1][1], m.Data[1][2]},
{m.Data[2][0], m.Data[2][1], m.Data[2][2]},
},
}
}
// AddMat4 m3 = m1 + m2
func AddMat4(m1, m2 *Mat4) *Mat4 {
return &Mat4{
@ -332,3 +634,47 @@ func NewMat4Id() *Mat4 {
},
}
}
func NewMat4Diag(diagVal float32) *Mat4 {
return &Mat4{
Data: [4][4]float32{
{diagVal, 0, 0, 0},
{0, diagVal, 0, 0},
{0, 0, diagVal, 0},
{0, 0, 0, diagVal},
},
}
}
func NewMat4DiagArr(diag [4]float32) *Mat4 {
return &Mat4{
Data: [4][4]float32{
{diag[0], 0, 0, 0},
{0, diag[1], 0, 0},
{0, 0, diag[2], 0},
{0, 0, 0, diag[3]},
},
}
}
func NewMat4Vec4(col0, col1, col2, col3 *Vec4) *Mat4 {
return &Mat4{
Data: [4][4]float32{
col0.Data,
col1.Data,
col2.Data,
col3.Data,
},
}
}
func NewMat4Arr(col0, col1, col2, col3 [4]float32) *Mat4 {
return &Mat4{
Data: [4][4]float32{
col0,
col1,
col2,
col3,
},
}
}

View File

@ -218,6 +218,94 @@ func TestTransposeMat4(t *testing.T) {
}
}
func TestDeterminantMat4(t *testing.T) {
m := gglm.NewMat4Id()
ans := float32(1)
if m.Determinant() != ans {
t.Errorf("Got: %f; Expected: %f", m.Determinant(), ans)
}
m = &gglm.Mat4{
Data: [4][4]float32{
{1, 0, 2, 1},
{2, 1, 3, 0},
{3, 0, 4, 1},
{4, 1, 5, 1},
},
}
ans = -2
if m.Determinant() != ans {
t.Errorf("Got: %f; Expected: %f", m.Determinant(), ans)
}
}
func TestInvertMat4(t *testing.T) {
m := gglm.NewMat4Id()
ans := gglm.NewMat4Id()
if !m.Invert().Eq(ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
m = &gglm.Mat4{
Data: [4][4]float32{
{1, 0, 2, 1},
{2, 1, 3, 0},
{3, 0, 4, 1},
{4, 1, 5, 1},
},
}
ans = &gglm.Mat4{
Data: [4][4]float32{
{-1, -1, 0, 1},
{0.5, 0, -3 / 2.0, 1},
{0.5, 1, 0.5, -1},
{1, -1, -1, 1},
},
}
if !m.Invert().Eq(ans) {
t.Errorf("Got: %v\nExpected: %v;\n", m.String(), ans.String())
}
}
func TestInvertAndTransposeMat4(t *testing.T) {
m := gglm.NewMat4Id()
ans := gglm.NewMat4Id().Transpose()
if !m.InvertAndTranspose().Eq(ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
m = &gglm.Mat4{
Data: [4][4]float32{
{1, 0, 2, 1},
{2, 1, 3, 0},
{3, 0, 4, 1},
{4, 1, 5, 1},
},
}
ans = &gglm.Mat4{
Data: [4][4]float32{
{-1, -1, 0, 1},
{0.5, 0, -3 / 2.0, 1},
{0.5, 1, 0.5, -1},
{1, -1, -1, 1},
},
}
if !m.InvertAndTranspose().Eq(ans.Transpose()) {
t.Errorf("Got: %v\nExpected: %v;\n", m.String(), ans.String())
}
}
func BenchmarkMulMat4(b *testing.B) {
m1 := gglm.NewMat4Id()

View File

@ -93,6 +93,20 @@ func (v *Vec2) Scale(x float32) *Vec2 {
return v
}
// ScaleVec v *= v2 (element wise multiplication)
func (v *Vec2) ScaleVec(v2 *Vec2) *Vec2 {
v.Data[0] *= v2.X()
v.Data[1] *= v2.Y()
return v
}
// ScaleArr v *= arr (element wise multiplication)
func (v *Vec2) ScaleArr(arr [2]float32) *Vec2 {
v.Data[0] *= arr[0]
v.Data[1] *= arr[1]
return v
}
// Add v += v2
func (v *Vec2) Add(v2 *Vec2) *Vec2 {
v.Data[0] += v2.X()
@ -164,3 +178,9 @@ func NewVec2(x, y float32) *Vec2 {
},
}
}
func NewVec2Arr(arr [2]float32) *Vec2 {
return &Vec2{
Data: arr,
}
}

View File

@ -140,6 +140,22 @@ func (v *Vec3) Scale(x float32) *Vec3 {
return v
}
// ScaleVec v *= v2 (element wise multiplication)
func (v *Vec3) ScaleVec(v2 *Vec3) *Vec3 {
v.Data[0] *= v2.X()
v.Data[1] *= v2.Y()
v.Data[2] *= v2.Z()
return v
}
// ScaleArr v *= arr (element wise multiplication)
func (v *Vec3) ScaleArr(arr [3]float32) *Vec3 {
v.Data[0] *= arr[0]
v.Data[1] *= arr[1]
v.Data[2] *= arr[2]
return v
}
func (v *Vec3) Add(v2 *Vec3) *Vec3 {
v.Data[0] += v2.X()
@ -251,3 +267,9 @@ func NewVec3(x, y, z float32) *Vec3 {
},
}
}
func NewVec3Arr(arr [3]float32) *Vec3 {
return &Vec3{
Data: arr,
}
}

View File

@ -193,6 +193,24 @@ func (v *Vec4) Scale(x float32) *Vec4 {
return v
}
// ScaleVec v *= v2 (element wise multiplication)
func (v *Vec4) ScaleVec(v2 *Vec4) *Vec4 {
v.Data[0] *= v2.X()
v.Data[1] *= v2.Y()
v.Data[2] *= v2.Z()
v.Data[3] *= v2.W()
return v
}
// ScaleArr v *= arr (element wise multiplication)
func (v *Vec4) ScaleArr(arr [4]float32) *Vec4 {
v.Data[0] *= arr[0]
v.Data[1] *= arr[1]
v.Data[2] *= arr[2]
v.Data[3] *= arr[3]
return v
}
func (v *Vec4) Add(v2 *Vec4) *Vec4 {
v.Data[0] += v2.X()
v.Data[1] += v2.Y()
@ -277,3 +295,9 @@ func NewVec4(x, y, z, w float32) *Vec4 {
},
}
}
func NewVec4Arr(arr [4]float32) *Vec4 {
return &Vec4{
Data: arr,
}
}