Compare commits

...

8 Commits

11 changed files with 987 additions and 193 deletions

403
buffers/framebuffer.go Executable file
View File

@ -0,0 +1,403 @@
package buffers
import (
"github.com/bloeys/nmage/logging"
"github.com/go-gl/gl/v4.1-core/gl"
)
type FramebufferAttachmentType int32
const (
FramebufferAttachmentType_Unknown FramebufferAttachmentType = iota
FramebufferAttachmentType_Texture
FramebufferAttachmentType_Renderbuffer
)
func (f FramebufferAttachmentType) IsValid() bool {
switch f {
case FramebufferAttachmentType_Texture:
fallthrough
case FramebufferAttachmentType_Renderbuffer:
return true
default:
return false
}
}
type FramebufferAttachmentDataFormat int32
const (
FramebufferAttachmentDataFormat_Unknown FramebufferAttachmentDataFormat = iota
FramebufferAttachmentDataFormat_R32Int
FramebufferAttachmentDataFormat_RGBA8
FramebufferAttachmentDataFormat_SRGBA
FramebufferAttachmentDataFormat_DepthF32
FramebufferAttachmentDataFormat_Depth24Stencil8
)
func (f FramebufferAttachmentDataFormat) IsColorFormat() bool {
return f == FramebufferAttachmentDataFormat_R32Int ||
f == FramebufferAttachmentDataFormat_RGBA8 ||
f == FramebufferAttachmentDataFormat_SRGBA
}
func (f FramebufferAttachmentDataFormat) IsDepthFormat() bool {
return f == FramebufferAttachmentDataFormat_Depth24Stencil8 ||
f == FramebufferAttachmentDataFormat_DepthF32
}
func (f FramebufferAttachmentDataFormat) GlInternalFormat() int32 {
switch f {
case FramebufferAttachmentDataFormat_R32Int:
return gl.R32I
case FramebufferAttachmentDataFormat_RGBA8:
return gl.RGB8
case FramebufferAttachmentDataFormat_SRGBA:
return gl.SRGB_ALPHA
case FramebufferAttachmentDataFormat_DepthF32:
return gl.DEPTH_COMPONENT
case FramebufferAttachmentDataFormat_Depth24Stencil8:
return gl.DEPTH24_STENCIL8
default:
logging.ErrLog.Fatalf("unknown framebuffer attachment data format. Format=%d\n", f)
return 0
}
}
func (f FramebufferAttachmentDataFormat) GlFormat() uint32 {
switch f {
case FramebufferAttachmentDataFormat_R32Int:
return gl.RED_INTEGER
case FramebufferAttachmentDataFormat_RGBA8:
fallthrough
case FramebufferAttachmentDataFormat_SRGBA:
return gl.RGBA
case FramebufferAttachmentDataFormat_DepthF32:
return gl.DEPTH_COMPONENT
case FramebufferAttachmentDataFormat_Depth24Stencil8:
return gl.DEPTH_STENCIL
default:
logging.ErrLog.Fatalf("unknown framebuffer attachment data format. Format=%d\n", f)
return 0
}
}
type FramebufferAttachment struct {
Id uint32
Type FramebufferAttachmentType
Format FramebufferAttachmentDataFormat
}
type Framebuffer struct {
Id uint32
ClearFlags uint32
Attachments []FramebufferAttachment
ColorAttachmentsCount uint32
Width uint32
Height uint32
}
func (fbo *Framebuffer) Bind() {
gl.BindFramebuffer(gl.FRAMEBUFFER, fbo.Id)
}
func (fbo *Framebuffer) BindWithViewport() {
gl.BindFramebuffer(gl.FRAMEBUFFER, fbo.Id)
gl.Viewport(0, 0, int32(fbo.Width), int32(fbo.Height))
}
// Clear calls gl.Clear with the fob's clear flags.
// Note that the fbo must be complete and bound.
// Calling this without a bound fbo will clear something else, like your screen.
func (fbo *Framebuffer) Clear() {
gl.Clear(fbo.ClearFlags)
}
func (fbo *Framebuffer) UnBind() {
gl.BindFramebuffer(gl.FRAMEBUFFER, 0)
}
func (fbo *Framebuffer) UnBindWithViewport(width, height uint32) {
gl.BindFramebuffer(gl.FRAMEBUFFER, 0)
gl.Viewport(0, 0, int32(width), int32(height))
}
// IsComplete returns true if OpenGL reports that the fbo is complete/usable.
// Note that this function binds and then unbinds the fbo
func (fbo *Framebuffer) IsComplete() bool {
fbo.Bind()
isComplete := gl.CheckFramebufferStatus(gl.FRAMEBUFFER) == gl.FRAMEBUFFER_COMPLETE
fbo.UnBind()
return isComplete
}
func (fbo *Framebuffer) HasColorAttachment() bool {
return fbo.ColorAttachmentsCount > 0
}
func (fbo *Framebuffer) HasDepthAttachment() bool {
for i := 0; i < len(fbo.Attachments); i++ {
a := &fbo.Attachments[i]
if a.Format.IsDepthFormat() {
return true
}
}
return false
}
func (fbo *Framebuffer) NewColorAttachment(
attachType FramebufferAttachmentType,
attachFormat FramebufferAttachmentDataFormat,
) {
if fbo.ColorAttachmentsCount == 8 {
logging.ErrLog.Fatalf("failed creating color attachment for framebuffer due it already having %d attached\n", fbo.ColorAttachmentsCount)
}
if !attachType.IsValid() {
logging.ErrLog.Fatalf("failed creating color attachment for framebuffer due to unknown attachment type. Type=%d\n", attachType)
}
if !attachFormat.IsColorFormat() {
logging.ErrLog.Fatalf("failed creating color attachment for framebuffer due to attachment data format not being a valid color type. Data format=%d\n", attachFormat)
}
a := FramebufferAttachment{
Type: attachType,
Format: attachFormat,
}
fbo.Bind()
if attachType == FramebufferAttachmentType_Texture {
// Create texture
gl.GenTextures(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindTexture(gl.TEXTURE_2D, a.Id)
gl.TexImage2D(gl.TEXTURE_2D, 0, attachFormat.GlInternalFormat(), int32(fbo.Width), int32(fbo.Height), 0, attachFormat.GlFormat(), gl.UNSIGNED_BYTE, nil)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR)
gl.BindTexture(gl.TEXTURE_2D, 0)
// Attach to fbo
gl.FramebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0+fbo.ColorAttachmentsCount, gl.TEXTURE_2D, a.Id, 0)
} else if attachType == FramebufferAttachmentType_Renderbuffer {
// Create rbo
gl.GenRenderbuffers(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate render buffer for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindRenderbuffer(gl.RENDERBUFFER, a.Id)
gl.RenderbufferStorage(gl.RENDERBUFFER, uint32(attachFormat.GlInternalFormat()), int32(fbo.Width), int32(fbo.Height))
gl.BindRenderbuffer(gl.RENDERBUFFER, 0)
// Attach to fbo
gl.FramebufferRenderbuffer(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0+fbo.ColorAttachmentsCount, gl.RENDERBUFFER, a.Id)
}
fbo.UnBind()
fbo.ColorAttachmentsCount++
fbo.ClearFlags |= gl.COLOR_BUFFER_BIT
fbo.Attachments = append(fbo.Attachments, a)
}
// SetNoColorBuffer sets the read and draw buffers of this fbo to 'NONE',
// which tells the graphics driver that we don't want a color buffer for this fbo.
//
// This is required because normally an fbo must have a color buffer to be considered complete, but by
// doing this we get marked as complete even without one.
//
// Usually used when you only care about some other buffer, like a depth buffer.
func (fbo *Framebuffer) SetNoColorBuffer() {
if fbo.HasColorAttachment() {
logging.ErrLog.Fatalf("failed SetNoColorBuffer because framebuffer already has a color attachment\n")
}
fbo.Bind()
gl.DrawBuffer(gl.NONE)
gl.ReadBuffer(gl.NONE)
fbo.UnBind()
}
func (fbo *Framebuffer) NewDepthAttachment(
attachType FramebufferAttachmentType,
attachFormat FramebufferAttachmentDataFormat,
) {
if fbo.HasDepthAttachment() {
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer because a depth attachment already exists\n")
}
if !attachType.IsValid() {
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer due to unknown attachment type. Type=%d\n", attachType)
}
if !attachFormat.IsDepthFormat() {
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer due to attachment data format not being a valid depth-stencil type. Data format=%d\n", attachFormat)
}
a := FramebufferAttachment{
Type: attachType,
Format: attachFormat,
}
fbo.Bind()
if attachType == FramebufferAttachmentType_Texture {
// Create texture
gl.GenTextures(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindTexture(gl.TEXTURE_2D, a.Id)
gl.TexImage2D(gl.TEXTURE_2D, 0, attachFormat.GlInternalFormat(), int32(fbo.Width), int32(fbo.Height), 0, attachFormat.GlFormat(), gl.FLOAT, nil)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
// This is so that any sampling outside the depth map gives a full depth value.
// Useful for example when doing shadow maps where we want things outside
// the range of the texture to not show shadow
borderColor := []float32{1, 1, 1, 1}
gl.TexParameterfv(gl.TEXTURE_2D, gl.TEXTURE_BORDER_COLOR, &borderColor[0])
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_BORDER)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_BORDER)
gl.BindTexture(gl.TEXTURE_2D, 0)
// Attach to fbo
gl.FramebufferTexture2D(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.TEXTURE_2D, a.Id, 0)
} else if attachType == FramebufferAttachmentType_Renderbuffer {
// Create rbo
gl.GenRenderbuffers(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate render buffer for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindRenderbuffer(gl.RENDERBUFFER, a.Id)
gl.RenderbufferStorage(gl.RENDERBUFFER, uint32(attachFormat.GlInternalFormat()), int32(fbo.Width), int32(fbo.Height))
gl.BindRenderbuffer(gl.RENDERBUFFER, 0)
// Attach to fbo
gl.FramebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, a.Id)
}
fbo.UnBind()
fbo.ClearFlags |= gl.DEPTH_BUFFER_BIT
fbo.Attachments = append(fbo.Attachments, a)
}
func (fbo *Framebuffer) NewDepthStencilAttachment(
attachType FramebufferAttachmentType,
attachFormat FramebufferAttachmentDataFormat,
) {
if fbo.HasDepthAttachment() {
logging.ErrLog.Fatalf("failed creating depth-stencil attachment for framebuffer because a depth-stencil attachment already exists\n")
}
if !attachType.IsValid() {
logging.ErrLog.Fatalf("failed creating depth-stencil attachment for framebuffer due to unknown attachment type. Type=%d\n", attachType)
}
if !attachFormat.IsDepthFormat() {
logging.ErrLog.Fatalf("failed creating depth-stencil attachment for framebuffer due to attachment data format not being a valid depth-stencil type. Data format=%d\n", attachFormat)
}
a := FramebufferAttachment{
Type: attachType,
Format: attachFormat,
}
fbo.Bind()
if attachType == FramebufferAttachmentType_Texture {
// Create texture
gl.GenTextures(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindTexture(gl.TEXTURE_2D, a.Id)
gl.TexImage2D(gl.TEXTURE_2D, 0, attachFormat.GlInternalFormat(), int32(fbo.Width), int32(fbo.Height), 0, attachFormat.GlFormat(), gl.UNSIGNED_INT_24_8, nil)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
gl.BindTexture(gl.TEXTURE_2D, 0)
// Attach to fbo
gl.FramebufferTexture2D(gl.FRAMEBUFFER, gl.DEPTH_STENCIL_ATTACHMENT, gl.TEXTURE_2D, a.Id, 0)
} else if attachType == FramebufferAttachmentType_Renderbuffer {
// Create rbo
gl.GenRenderbuffers(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate render buffer for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindRenderbuffer(gl.RENDERBUFFER, a.Id)
gl.RenderbufferStorage(gl.RENDERBUFFER, uint32(attachFormat.GlInternalFormat()), int32(fbo.Width), int32(fbo.Height))
gl.BindRenderbuffer(gl.RENDERBUFFER, 0)
// Attach to fbo
gl.FramebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_STENCIL_ATTACHMENT, gl.RENDERBUFFER, a.Id)
}
fbo.UnBind()
fbo.ClearFlags |= gl.DEPTH_BUFFER_BIT | gl.STENCIL_BUFFER_BIT
fbo.Attachments = append(fbo.Attachments, a)
}
func (fbo *Framebuffer) Delete() {
if fbo.Id == 0 {
return
}
gl.DeleteFramebuffers(1, &fbo.Id)
fbo.Id = 0
}
func NewFramebuffer(width, height uint32) Framebuffer {
// It is allowed to have attachments of differnt sizes in one FBO,
// but that complicates things (e.g. which size to use for gl.viewport) and I don't see much use
// for it now, so we will have all attachments share size
fbo := Framebuffer{
Width: width,
Height: height,
}
gl.GenFramebuffers(1, &fbo.Id)
if fbo.Id == 0 {
logging.ErrLog.Fatalf("failed to generate framebuffer. GlError=%d\n", gl.GetError())
}
return fbo
}

454
main.go
View File

@ -7,15 +7,15 @@ import (
imgui "github.com/AllenDang/cimgui-go"
"github.com/bloeys/gglm/gglm"
"github.com/bloeys/nmage/assert"
"github.com/bloeys/nmage/assets"
"github.com/bloeys/nmage/buffers"
"github.com/bloeys/nmage/camera"
"github.com/bloeys/nmage/engine"
"github.com/bloeys/nmage/entity"
"github.com/bloeys/nmage/input"
"github.com/bloeys/nmage/logging"
"github.com/bloeys/nmage/materials"
"github.com/bloeys/nmage/meshes"
"github.com/bloeys/nmage/registry"
"github.com/bloeys/nmage/renderer/rend3dgl"
"github.com/bloeys/nmage/timing"
nmageimgui "github.com/bloeys/nmage/ui/imgui"
@ -50,6 +50,28 @@ type DirLight struct {
SpecularColor gglm.Vec3
}
var (
dirLightSize float32 = 30
dirLightNear float32 = 0.1
dirLightFar float32 = 30
dirLightPos = gglm.NewVec3(0, 10, 0)
)
func (d *DirLight) GetProjViewMat() gglm.Mat4 {
// Some arbitrary position for the directional light
pos := dirLightPos
size := dirLightSize
nearClip := dirLightNear
farClip := dirLightFar
projMat := gglm.Ortho(-size, size, -size, size, nearClip, farClip).Mat4
viewMat := gglm.LookAtRH(pos, pos.Clone().Add(d.Dir.Clone().Scale(10)), gglm.NewVec3(0, 1, 0)).Mat4
return *projMat.Mul(&viewMat)
}
// Check https://wiki.ogre3d.org/tiki-index.php?page=-Point+Light+Attenuation for values
type PointLight struct {
Pos gglm.Vec3
@ -99,10 +121,26 @@ var (
yaw float32 = -1.5
cam *camera.Camera
renderToDemoFbo = true
renderToBackBuffer = true
demoFboScale = gglm.NewVec2(0.25, 0.25)
demoFboOffset = gglm.NewVec2(0.75, -0.75)
demoFbo buffers.Framebuffer
renderToDepthMapFbo = true
depthMapFboScale = gglm.NewVec2(0.25, 0.25)
depthMapFboOffset = gglm.NewVec2(0.75, -0.2)
depthMapFbo buffers.Framebuffer
screenQuadVao buffers.VertexArray
screenQuadMat *materials.Material
unlitMat *materials.Material
whiteMat *materials.Material
containerMat *materials.Material
palleteMat *materials.Material
skyboxMat *materials.Material
depthMapMat *materials.Material
debugDepthMat *materials.Material
cubeMesh *meshes.Mesh
@ -112,8 +150,8 @@ var (
cubeModelMat = gglm.NewTrMatId()
drawSkybox = true
debugDrawDepthBuffer bool
renderSkybox = true
renderDepthBuffer bool
skyboxCmap assets.Cubemap
@ -124,9 +162,9 @@ var (
// Lights
dirLight = DirLight{
Dir: *gglm.NewVec3(0, -0.8, 0.2).Normalize(),
DiffuseColor: *gglm.NewVec3(0, 0, 0),
SpecularColor: *gglm.NewVec3(0, 0, 0),
Dir: *gglm.NewVec3(0, -0.5, -0.8).Normalize(),
DiffuseColor: *gglm.NewVec3(1, 1, 1),
SpecularColor: *gglm.NewVec3(1, 1, 1),
}
pointLights = [...]PointLight{
{
@ -177,64 +215,14 @@ var (
)
type Game struct {
WinWidth int32
WinHeight int32
Win *engine.Window
ImGUIInfo nmageimgui.ImguiInfo
}
type TransformComp struct {
entity.BaseComp
Pos *gglm.Vec3
Rot *gglm.Quat
Scale *gglm.Vec3
}
func (t *TransformComp) Name() string {
return "Transform Component"
}
func Test() {
// lvl := level.NewLevel("test level")
testRegistry := registry.NewRegistry[int](100)
e1, e1Handle := testRegistry.New()
e1CompContainer := entity.NewCompContainer()
fmt.Printf("Entity 1: %+v; Handle: %+v; Index: %+v; Gen: %+v; Flags: %+v\n", e1, e1Handle, e1Handle.Index(), e1Handle.Generation(), e1Handle.Flags())
trComp := entity.GetComp[*TransformComp](&e1CompContainer)
fmt.Println("Get comp before adding any:", trComp)
entity.AddComp(e1Handle, &e1CompContainer, &TransformComp{
Pos: gglm.NewVec3(0, 0, 0),
Rot: gglm.NewQuatEulerXYZ(0, 0, 0),
Scale: gglm.NewVec3(0, 0, 0),
})
trComp = entity.GetComp[*TransformComp](&e1CompContainer)
fmt.Println("Get transform comp:", trComp)
e2, e2Handle := testRegistry.New()
e3, e3Handle := testRegistry.New()
e4, e4Handle := testRegistry.New()
fmt.Printf("Entity 2: %+v; Handle: %+v; Index: %+v; Gen: %+v; Flags: %+v\n", e2, e2Handle, e2Handle.Index(), e2Handle.Generation(), e2Handle.Flags())
fmt.Printf("Entity 3: %+v; Handle: %+v; Index: %+v; Gen: %+v; Flags: %+v\n", e3, e3Handle, e3Handle.Index(), e3Handle.Generation(), e3Handle.Flags())
fmt.Printf("Entity 4: %+v; Handle: %+v; Index: %+v; Gen: %+v; Flags: %+v\n", e4, e4Handle, e4Handle.Index(), e4Handle.Generation(), e4Handle.Flags())
*e2 = 1000
fmt.Printf("Entity 2 value after registry get: %+v\n", *testRegistry.Get(e2Handle))
testRegistry.Free(e2Handle)
fmt.Printf("Entity 2 value after free: %+v\n", testRegistry.Get(e2Handle))
e5, e5Handle := testRegistry.New()
fmt.Printf("Entity 5: %+v; Handle: %+v; Index: %+v; Gen: %+v; Flags: %+v\n", e5, e5Handle, e5Handle.Index(), e5Handle.Generation(), e5Handle.Flags())
}
func main() {
// Test()
// return
//Init engine
err := engine.Init()
if err != nil {
@ -255,6 +243,8 @@ func main() {
game := &Game{
Win: window,
WinWidth: int32(unscaledWindowWidth * dpiScaling),
WinHeight: int32(unscaledWindowHeight * dpiScaling),
ImGUIInfo: nmageimgui.NewImGui("./res/shaders/imgui.glsl"),
}
window.EventCallbacks = append(window.EventCallbacks, game.handleWindowEvents)
@ -268,13 +258,12 @@ func (g *Game) handleWindowEvents(e sdl.Event) {
case *sdl.WindowEvent:
if e.Event == sdl.WINDOWEVENT_SIZE_CHANGED {
width := e.Data1
height := e.Data2
cam.AspectRatio = float32(width) / float32(height)
cam.Update()
g.WinWidth = e.Data1
g.WinHeight = e.Data2
cam.AspectRatio = float32(g.WinWidth) / float32(g.WinHeight)
palleteMat.SetUnifMat4("projMat", &cam.ProjMat)
debugDepthMat.SetUnifMat4("projMat", &cam.ProjMat)
cam.Update()
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
}
}
}
@ -385,23 +374,33 @@ func (g *Game) Init() {
logging.ErrLog.Fatalln("Failed to load cubemap. Err: ", err)
}
//
// Create materials and assign any unused texture slots to black
//
screenQuadMat = materials.NewMaterial("Screen Quad Mat", "./res/shaders/screen-quad.glsl")
screenQuadMat.SetUnifVec2("scale", demoFboScale)
screenQuadMat.SetUnifVec2("offset", demoFboOffset)
screenQuadMat.SetUnifInt32("material.diffuse", int32(materials.TextureSlot_Diffuse))
unlitMat = materials.NewMaterial("Unlit mat", "./res/shaders/simple-unlit.glsl")
unlitMat.SetUnifInt32("material.diffuse", int32(materials.TextureSlot_Diffuse))
whiteMat = materials.NewMaterial("White mat", "./res/shaders/simple.glsl")
whiteMat.Shininess = 64
whiteMat.DiffuseTex = whiteTex.TexID
whiteMat.SpecularTex = blackTex.TexID
whiteMat.NormalTex = blackTex.TexID
whiteMat.EmissionTex = blackTex.TexID
whiteMat.SetUnifInt32("material.diffuse", 0)
whiteMat.SetUnifInt32("material.specular", 1)
// whiteMat.SetUnifInt32("material.normal", 2)
whiteMat.SetUnifInt32("material.emission", 3)
whiteMat.SetUnifMat4("projMat", &cam.ProjMat)
whiteMat.SetUnifInt32("material.diffuse", int32(materials.TextureSlot_Diffuse))
whiteMat.SetUnifInt32("material.specular", int32(materials.TextureSlot_Specular))
// whiteMat.SetUnifInt32("material.normal", int32(materials.TextureSlot_Normal))
whiteMat.SetUnifInt32("material.emission", int32(materials.TextureSlot_Emission))
whiteMat.SetUnifVec3("ambientColor", ambientColor)
whiteMat.SetUnifFloat32("material.shininess", whiteMat.Shininess)
whiteMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
whiteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
whiteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
whiteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
containerMat = materials.NewMaterial("Container mat", "./res/shaders/simple.glsl")
containerMat.Shininess = 64
@ -409,16 +408,16 @@ func (g *Game) Init() {
containerMat.SpecularTex = containerSpecularTex.TexID
containerMat.NormalTex = blackTex.TexID
containerMat.EmissionTex = blackTex.TexID
containerMat.SetUnifInt32("material.diffuse", 0)
containerMat.SetUnifInt32("material.specular", 1)
// containerMat.SetUnifInt32("material.normal", 2)
containerMat.SetUnifInt32("material.emission", 3)
containerMat.SetUnifMat4("projMat", &cam.ProjMat)
containerMat.SetUnifInt32("material.diffuse", int32(materials.TextureSlot_Diffuse))
containerMat.SetUnifInt32("material.specular", int32(materials.TextureSlot_Specular))
// containerMat.SetUnifInt32("material.normal", int32(materials.TextureSlot_Normal))
containerMat.SetUnifInt32("material.emission", int32(materials.TextureSlot_Emission))
containerMat.SetUnifVec3("ambientColor", ambientColor)
containerMat.SetUnifFloat32("material.shininess", containerMat.Shininess)
containerMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
containerMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
containerMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
containerMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
palleteMat = materials.NewMaterial("Pallete mat", "./res/shaders/simple.glsl")
palleteMat.Shininess = 64
@ -426,33 +425,83 @@ func (g *Game) Init() {
palleteMat.SpecularTex = blackTex.TexID
palleteMat.NormalTex = blackTex.TexID
palleteMat.EmissionTex = blackTex.TexID
palleteMat.SetUnifInt32("material.diffuse", 0)
palleteMat.SetUnifInt32("material.specular", 1)
// palleteMat.SetUnifInt32("material.normal", 2)
palleteMat.SetUnifInt32("material.emission", 3)
palleteMat.SetUnifMat4("projMat", &cam.ProjMat)
palleteMat.SetUnifInt32("material.diffuse", int32(materials.TextureSlot_Diffuse))
palleteMat.SetUnifInt32("material.specular", int32(materials.TextureSlot_Specular))
// palleteMat.SetUnifInt32("material.normal", int32(materials.TextureSlot_Normal))
palleteMat.SetUnifInt32("material.emission", int32(materials.TextureSlot_Emission))
palleteMat.SetUnifVec3("ambientColor", ambientColor)
palleteMat.SetUnifFloat32("material.shininess", palleteMat.Shininess)
palleteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
palleteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
palleteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
debugDepthMat = materials.NewMaterial("Debug depth mat", "./res/shaders/debug-depth.glsl")
debugDepthMat.SetUnifMat4("projMat", &cam.ProjMat)
depthMapMat = materials.NewMaterial("Depth Map mat", "./res/shaders/depth-map.glsl")
skyboxMat = materials.NewMaterial("Skybox mat", "./res/shaders/skybox.glsl")
skyboxMat.CubemapTex = skyboxCmap.TexID
skyboxMat.SetUnifInt32("skybox", int32(materials.TextureSlot_Cubemap))
// Movement, scale and rotation
// Cube model mat
translationMat := gglm.NewTranslationMat(gglm.NewVec3(0, 0, 0))
scaleMat := gglm.NewScaleMat(gglm.NewVec3(1, 1, 1))
rotMat := gglm.NewRotMat(gglm.NewQuatEuler(gglm.NewVec3(-90, -90, 0).AsRad()))
cubeModelMat.Mul(translationMat.Mul(rotMat.Mul(scaleMat)))
// Screen quad vao setup.
// We don't actually care about the values here because the quad is hardcoded in the shader,
// but we just want to have a vao with 6 vertices and uv0 so opengl can be called properly
screenQuadVbo := buffers.NewVertexBuffer(buffers.Element{ElementType: buffers.DataTypeVec3}, buffers.Element{ElementType: buffers.DataTypeVec2})
screenQuadVbo.SetData(make([]float32, 6), buffers.BufUsage_Static)
screenQuadVao = buffers.NewVertexArray()
screenQuadVao.AddVertexBuffer(screenQuadVbo)
// Fbos and lights
g.initFbos()
g.updateLights()
updateViewMat()
// Initial camera update
cam.Update()
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
}
func (g *Game) initFbos() {
// Demo fbo
demoFbo = buffers.NewFramebuffer(uint32(g.WinWidth), uint32(g.WinHeight))
demoFbo.NewColorAttachment(
buffers.FramebufferAttachmentType_Texture,
buffers.FramebufferAttachmentDataFormat_SRGBA,
)
demoFbo.NewDepthStencilAttachment(
buffers.FramebufferAttachmentType_Renderbuffer,
buffers.FramebufferAttachmentDataFormat_Depth24Stencil8,
)
assert.T(demoFbo.IsComplete(), "Demo fbo is not complete after init")
// Depth map fbo
depthMapFbo = buffers.NewFramebuffer(1024, 1024)
depthMapFbo.SetNoColorBuffer()
depthMapFbo.NewDepthAttachment(
buffers.FramebufferAttachmentType_Texture,
buffers.FramebufferAttachmentDataFormat_DepthF32,
)
assert.T(depthMapFbo.IsComplete(), "Depth map fbo is not complete after init")
}
func (g *Game) updateLights() {
// Directional light
whiteMat.ShadowMap = depthMapFbo.Attachments[0].Id
containerMat.ShadowMap = depthMapFbo.Attachments[0].Id
palleteMat.ShadowMap = depthMapFbo.Attachments[0].Id
// Point lights
for i := 0; i < len(pointLights); i++ {
pl := &pointLights[i]
@ -483,6 +532,7 @@ func (g *Game) updateLights() {
palleteMat.SetUnifFloat32(indexString+".quadratic", pl.Quadratic)
}
// Spotlights
for i := 0; i < len(spotLights); i++ {
l := &spotLights[i]
@ -546,10 +596,12 @@ func (g *Game) showDebugWindow() {
// Camera
imgui.Text("Camera")
if imgui.DragFloat3("Cam Pos", &cam.Pos.Data) {
updateViewMat()
cam.Update()
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
}
if imgui.DragFloat3("Cam Forward", &cam.Forward.Data) {
updateViewMat()
cam.Update()
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
}
imgui.Spacing()
@ -565,17 +617,6 @@ func (g *Game) showDebugWindow() {
imgui.Spacing()
// Specular
imgui.Text("Specular Settings")
if imgui.DragFloat("Specular Shininess", &whiteMat.Shininess) {
whiteMat.SetUnifFloat32("material.shininess", whiteMat.Shininess)
containerMat.SetUnifFloat32("material.shininess", whiteMat.Shininess)
palleteMat.SetUnifFloat32("material.shininess", whiteMat.Shininess)
}
imgui.Spacing()
// Directional light
imgui.Text("Directional Light")
@ -597,6 +638,22 @@ func (g *Game) showDebugWindow() {
palleteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
}
imgui.DragFloat3("dPos", &dirLightPos.Data)
imgui.DragFloat("dSize", &dirLightSize)
imgui.DragFloat("dNear", &dirLightNear)
imgui.DragFloat("dFar", &dirLightFar)
imgui.Spacing()
// Specular
imgui.Text("Specular Settings")
if imgui.DragFloat("Specular Shininess", &whiteMat.Shininess) {
whiteMat.SetUnifFloat32("material.shininess", whiteMat.Shininess)
containerMat.SetUnifFloat32("material.shininess", whiteMat.Shininess)
palleteMat.SetUnifFloat32("material.shininess", whiteMat.Shininess)
}
imgui.Spacing()
// Point lights
@ -693,11 +750,24 @@ func (g *Game) showDebugWindow() {
imgui.EndListBox()
}
// Demo fbo
imgui.Text("Demo Framebuffer")
imgui.Checkbox("Render to demo FBO", &renderToDemoFbo)
imgui.DragFloat2("Scale##0", &demoFboScale.Data)
imgui.DragFloat2("Offset##0", &demoFboOffset.Data)
// Depth map fbo
imgui.Text("Depth Map Framebuffer")
imgui.Checkbox("Render to depth map FBO", &renderToDepthMapFbo)
imgui.DragFloat2("Scale##1", &depthMapFboScale.Data)
imgui.DragFloat2("Offset##1", &depthMapFboOffset.Data)
// Other
imgui.Text("Other Settings")
imgui.Checkbox("Draw Skybox", &drawSkybox)
imgui.Checkbox("Debug depth buffer", &debugDrawDepthBuffer)
imgui.Checkbox("Render skybox", &renderSkybox)
imgui.Checkbox("Render to back buffer", &renderToBackBuffer)
imgui.Checkbox("Render depth buffer", &renderDepthBuffer)
imgui.End()
}
@ -725,7 +795,7 @@ func (g *Game) updateCameraLookAround() {
// Update cam forward
cam.UpdateRotation(pitch, yaw)
updateViewMat()
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
}
func (g *Game) updateCameraPos() {
@ -756,81 +826,159 @@ func (g *Game) updateCameraPos() {
}
if update {
updateViewMat()
cam.Update()
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
}
}
func (g *Game) Render() {
dirLightProjViewMat := dirLight.GetProjViewMat()
// Set some uniforms
whiteMat.SetUnifVec3("camPos", &cam.Pos)
whiteMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
containerMat.SetUnifVec3("camPos", &cam.Pos)
containerMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
palleteMat.SetUnifVec3("camPos", &cam.Pos)
palleteMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
depthMapMat.SetUnifMat4("projViewMat", &dirLightProjViewMat)
//
// Render depth map for shadows
//
depthMapFbo.BindWithViewport()
depthMapFbo.Clear()
// Culling front faces helps 'peter panning' when
// drawing shadow maps, but works only for solids with a back face (i.e. quads won't cast shadows).
// Check more here: https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
//
// Some note that this is too troublesome and fails in many cases. Might be better to remove.
gl.CullFace(gl.FRONT)
g.RenderScene(depthMapMat)
gl.CullFace(gl.BACK)
depthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
if renderToDepthMapFbo {
screenQuadMat.DiffuseTex = depthMapFbo.Attachments[0].Id
screenQuadMat.SetUnifVec2("offset", depthMapFboOffset)
screenQuadMat.SetUnifVec2("scale", depthMapFboScale)
screenQuadMat.Bind()
window.Rend.DrawVertexArray(screenQuadMat, &screenQuadVao, 0, 6)
}
if renderToBackBuffer {
if renderDepthBuffer {
g.RenderScene(debugDepthMat)
} else {
g.RenderScene(nil)
}
}
if renderSkybox {
g.DrawSkybox()
}
if renderToDemoFbo {
demoFbo.Bind()
demoFbo.Clear()
if renderDepthBuffer {
g.RenderScene(debugDepthMat)
} else {
g.RenderScene(nil)
}
if renderSkybox {
g.DrawSkybox()
}
demoFbo.UnBind()
screenQuadMat.DiffuseTex = demoFbo.Attachments[0].Id
screenQuadMat.SetUnifVec2("offset", demoFboOffset)
screenQuadMat.SetUnifVec2("scale", demoFboScale)
window.Rend.DrawVertexArray(screenQuadMat, &screenQuadVao, 0, 6)
}
}
var (
rotatingCubeSpeedDeg1 float32 = 45
rotatingCubeSpeedDeg2 float32 = 90
rotatingCubeTrMat1 = *gglm.NewTrMatId().Translate(gglm.NewVec3(-4, -1, 4))
rotatingCubeTrMat2 = *gglm.NewTrMatId().Translate(gglm.NewVec3(-1, 0.5, 4))
)
func (g *Game) RenderScene(overrideMat *materials.Material) {
tempModelMatrix := cubeModelMat.Clone()
whiteMat.SetUnifVec3("camPos", &cam.Pos)
containerMat.SetUnifVec3("camPos", &cam.Pos)
palleteMat.SetUnifVec3("camPos", &cam.Pos)
// See if we need overrides
sunMat := palleteMat
chairMat := palleteMat
cubeMat := containerMat
if debugDrawDepthBuffer {
sunMat = debugDepthMat
chairMat = debugDepthMat
cubeMat = debugDepthMat
if overrideMat != nil {
sunMat = overrideMat
chairMat = overrideMat
cubeMat = overrideMat
}
// Draw dir light
window.Rend.Draw(sphereMesh, gglm.NewTrMatId().Translate(gglm.NewVec3(0, 10, 0)).Scale(gglm.NewVec3(0.1, 0.1, 0.1)), sunMat)
window.Rend.DrawMesh(sphereMesh, gglm.NewTrMatId().Translate(gglm.NewVec3(0, 10, 0)).Scale(gglm.NewVec3(0.1, 0.1, 0.1)), sunMat)
// Draw point lights
for i := 0; i < len(pointLights); i++ {
pl := &pointLights[i]
window.Rend.Draw(cubeMesh, gglm.NewTrMatId().Translate(&pl.Pos).Scale(gglm.NewVec3(0.1, 0.1, 0.1)), sunMat)
window.Rend.DrawMesh(cubeMesh, gglm.NewTrMatId().Translate(&pl.Pos).Scale(gglm.NewVec3(0.1, 0.1, 0.1)), sunMat)
}
// Chair
window.Rend.Draw(chairMesh, tempModelMatrix, chairMat)
window.Rend.DrawMesh(chairMesh, tempModelMatrix, chairMat)
// Ground
window.Rend.Draw(cubeMesh, gglm.NewTrMatId().Translate(gglm.NewVec3(0, -3, 0)).Scale(gglm.NewVec3(20, 1, 20)), cubeMat)
window.Rend.DrawMesh(cubeMesh, gglm.NewTrMatId().Translate(gglm.NewVec3(0, -3, 0)).Scale(gglm.NewVec3(20, 1, 20)), cubeMat)
// Cubes
rowSize := 1
for y := 0; y < rowSize; y++ {
for x := 0; x < rowSize; x++ {
tempModelMatrix.Translate(gglm.NewVec3(-6, 0, 0))
window.Rend.Draw(cubeMesh, tempModelMatrix, cubeMat)
}
tempModelMatrix.Translate(gglm.NewVec3(float32(rowSize), -1, 0))
}
window.Rend.DrawMesh(cubeMesh, tempModelMatrix, cubeMat)
if drawSkybox {
g.DrawSkybox()
}
tempModelMatrix.Translate(gglm.NewVec3(0, -1, -4))
window.Rend.DrawMesh(cubeMesh, tempModelMatrix, cubeMat)
// Rotating cubes
rotatingCubeTrMat1.Rotate(rotatingCubeSpeedDeg1*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(0, 1, 0))
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat1, cubeMat)
rotatingCubeTrMat2.Rotate(rotatingCubeSpeedDeg2*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(1, 1, 0))
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat2, cubeMat)
// Cubes generator
// rowSize := 1
// for y := 0; y < rowSize; y++ {
// for x := 0; x < rowSize; x++ {
// tempModelMatrix.Translate(gglm.NewVec3(-6, 0, 0))
// window.Rend.DrawMesh(cubeMesh, tempModelMatrix, cubeMat)
// }
// tempModelMatrix.Translate(gglm.NewVec3(float32(rowSize), -1, 0))
// }
}
func (g *Game) DrawSkybox() {
gl.Disable(gl.CULL_FACE)
gl.DepthFunc(gl.LEQUAL)
skyboxMesh.Vao.Bind()
skyboxMat.Bind()
gl.ActiveTexture(gl.TEXTURE0)
gl.BindTexture(gl.TEXTURE_CUBE_MAP, skyboxCmap.TexID)
viewMat := cam.ViewMat.Clone()
viewMat.Set(0, 3, 0)
viewMat.Set(1, 3, 0)
viewMat.Set(2, 3, 0)
viewMat.Set(3, 0, 0)
viewMat.Set(3, 1, 0)
viewMat.Set(3, 2, 0)
viewMat.Set(3, 3, 0)
skyboxMat.SetUnifMat4("viewMat", viewMat)
skyboxMat.SetUnifMat4("projMat", &cam.ProjMat)
for i := 0; i < len(skyboxMesh.SubMeshes); i++ {
gl.DrawElementsBaseVertexWithOffset(gl.TRIANGLES, skyboxMesh.SubMeshes[i].IndexCount, gl.UNSIGNED_INT, uintptr(skyboxMesh.SubMeshes[i].BaseIndex), skyboxMesh.SubMeshes[i].BaseVertex)
}
window.Rend.DrawCubemap(skyboxMesh, skyboxMat)
gl.DepthFunc(gl.LESS)
gl.Enable(gl.CULL_FACE)
@ -843,10 +991,24 @@ func (g *Game) DeInit() {
g.Win.Destroy()
}
func updateViewMat() {
cam.Update()
whiteMat.SetUnifMat4("viewMat", &cam.ViewMat)
containerMat.SetUnifMat4("viewMat", &cam.ViewMat)
palleteMat.SetUnifMat4("viewMat", &cam.ViewMat)
debugDepthMat.SetUnifMat4("viewMat", &cam.ViewMat)
func updateAllProjViewMats(projMat, viewMat gglm.Mat4) {
projViewMat := projMat.Clone().Mul(&viewMat)
unlitMat.SetUnifMat4("projViewMat", projViewMat)
whiteMat.SetUnifMat4("projViewMat", projViewMat)
containerMat.SetUnifMat4("projViewMat", projViewMat)
palleteMat.SetUnifMat4("projViewMat", projViewMat)
debugDepthMat.SetUnifMat4("projViewMat", projViewMat)
// Update skybox projViewMat
skyboxViewMat := viewMat.Clone()
skyboxViewMat.Set(0, 3, 0)
skyboxViewMat.Set(1, 3, 0)
skyboxViewMat.Set(2, 3, 0)
skyboxViewMat.Set(3, 0, 0)
skyboxViewMat.Set(3, 1, 0)
skyboxViewMat.Set(3, 2, 0)
skyboxViewMat.Set(3, 3, 0)
skyboxMat.SetUnifMat4("projViewMat", projMat.Clone().Mul(skyboxViewMat))
}

View File

@ -8,6 +8,17 @@ import (
"github.com/go-gl/gl/v4.1-core/gl"
)
type TextureSlot uint32
const (
TextureSlot_Diffuse TextureSlot = 0
TextureSlot_Specular TextureSlot = 1
TextureSlot_Normal TextureSlot = 2
TextureSlot_Emission TextureSlot = 3
TextureSlot_Cubemap TextureSlot = 10
TextureSlot_ShadowMap TextureSlot = 11
)
type Material struct {
Name string
ShaderProg shaders.ShaderProgram
@ -21,41 +32,53 @@ type Material struct {
NormalTex uint32
EmissionTex uint32
// Shininess of specular highlights
Shininess float32
// Cubemap
CubemapTex uint32
// Shadowmaps
ShadowMap uint32
}
func (m *Material) Bind() {
gl.UseProgram(m.ShaderProg.ID)
gl.ActiveTexture(gl.TEXTURE0)
if m.DiffuseTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Diffuse))
gl.BindTexture(gl.TEXTURE_2D, m.DiffuseTex)
}
gl.ActiveTexture(gl.TEXTURE1)
if m.SpecularTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Specular))
gl.BindTexture(gl.TEXTURE_2D, m.SpecularTex)
}
gl.ActiveTexture(gl.TEXTURE2)
if m.NormalTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Normal))
gl.BindTexture(gl.TEXTURE_2D, m.NormalTex)
}
gl.ActiveTexture(gl.TEXTURE3)
if m.EmissionTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Emission))
gl.BindTexture(gl.TEXTURE_2D, m.EmissionTex)
}
if m.CubemapTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Cubemap))
gl.BindTexture(gl.TEXTURE_CUBE_MAP, m.CubemapTex)
}
if m.ShadowMap != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap))
gl.BindTexture(gl.TEXTURE_2D, m.ShadowMap)
}
}
func (m *Material) UnBind() {
gl.UseProgram(0)
//TODO: Should we unbind textures here? Are these two lines needed?
// gl.ActiveTexture(gl.TEXTURE0)
// gl.BindTexture(gl.TEXTURE_2D, 0)
// gl.ActiveTexture(gl.TEXTURE1)
// gl.BindTexture(gl.TEXTURE_2D, 0)
// gl.ActiveTexture(gl.TEXTURE2)
// gl.BindTexture(gl.TEXTURE_2D, 0)
// gl.ActiveTexture(gl.TEXTURE3)
// gl.BindTexture(gl.TEXTURE_2D, 0)
}
func (m *Material) GetAttribLoc(attribName string) int32 {
@ -132,7 +155,7 @@ func NewMaterial(matName, shaderPath string) *Material {
shdrProg, err := shaders.LoadAndCompileCombinedShader(shaderPath)
if err != nil {
logging.ErrLog.Fatalln("Failed to create new material. Err: ", err)
logging.ErrLog.Fatalf("Failed to create new material '%s'. Err: %s\n", matName, err.Error())
}
return &Material{Name: matName, ShaderProg: shdrProg, UnifLocs: make(map[string]int32), AttribLocs: make(map[string]int32)}
@ -142,7 +165,7 @@ func NewMaterialSrc(matName string, shaderSrc []byte) *Material {
shdrProg, err := shaders.LoadAndCompileCombinedShaderSrc(shaderSrc)
if err != nil {
logging.ErrLog.Fatalln("Failed to create new material. Err: ", err)
logging.ErrLog.Fatalf("Failed to create new material '%s'. Err: %s\n", matName, err.Error())
}
return &Material{Name: matName, ShaderProg: shdrProg, UnifLocs: make(map[string]int32), AttribLocs: make(map[string]int32)}

View File

@ -2,6 +2,7 @@ package rend3dgl
import (
"github.com/bloeys/gglm/gglm"
"github.com/bloeys/nmage/buffers"
"github.com/bloeys/nmage/materials"
"github.com/bloeys/nmage/meshes"
"github.com/bloeys/nmage/renderer"
@ -11,23 +12,56 @@ import (
var _ renderer.Render = &Rend3DGL{}
type Rend3DGL struct {
BoundVao *buffers.VertexArray
BoundMesh *meshes.Mesh
BoundMat *materials.Material
}
func (r3d *Rend3DGL) Draw(mesh *meshes.Mesh, trMat *gglm.TrMat, mat *materials.Material) {
func (r *Rend3DGL) DrawMesh(mesh *meshes.Mesh, modelMat *gglm.TrMat, mat *materials.Material) {
if mesh != r3d.BoundMesh {
if mesh != r.BoundMesh {
mesh.Vao.Bind()
r3d.BoundMesh = mesh
r.BoundMesh = mesh
}
if mat != r3d.BoundMat {
if mat != r.BoundMat {
mat.Bind()
r3d.BoundMat = mat
r.BoundMat = mat
}
mat.SetUnifMat4("modelMat", &trMat.Mat4)
mat.SetUnifMat4("modelMat", &modelMat.Mat4)
for i := 0; i < len(mesh.SubMeshes); i++ {
gl.DrawElementsBaseVertexWithOffset(gl.TRIANGLES, mesh.SubMeshes[i].IndexCount, gl.UNSIGNED_INT, uintptr(mesh.SubMeshes[i].BaseIndex), mesh.SubMeshes[i].BaseVertex)
}
}
func (r *Rend3DGL) DrawVertexArray(mat *materials.Material, vao *buffers.VertexArray, firstElement int32, elementCount int32) {
if vao != r.BoundVao {
vao.Bind()
r.BoundVao = vao
}
if mat != r.BoundMat {
mat.Bind()
r.BoundMat = mat
}
gl.DrawArrays(gl.TRIANGLES, firstElement, elementCount)
}
func (r *Rend3DGL) DrawCubemap(mesh *meshes.Mesh, mat *materials.Material) {
if mesh != r.BoundMesh {
mesh.Vao.Bind()
r.BoundMesh = mesh
}
if mat != r.BoundMat {
mat.Bind()
r.BoundMat = mat
}
for i := 0; i < len(mesh.SubMeshes); i++ {
gl.DrawElementsBaseVertexWithOffset(gl.TRIANGLES, mesh.SubMeshes[i].IndexCount, gl.UNSIGNED_INT, uintptr(mesh.SubMeshes[i].BaseIndex), mesh.SubMeshes[i].BaseVertex)

View File

@ -2,11 +2,14 @@ package renderer
import (
"github.com/bloeys/gglm/gglm"
"github.com/bloeys/nmage/buffers"
"github.com/bloeys/nmage/materials"
"github.com/bloeys/nmage/meshes"
)
type Render interface {
Draw(mesh *meshes.Mesh, trMat *gglm.TrMat, mat *materials.Material)
DrawMesh(mesh *meshes.Mesh, trMat *gglm.TrMat, mat *materials.Material)
DrawVertexArray(mat *materials.Material, vao *buffers.VertexArray, firstElement int32, count int32)
DrawCubemap(mesh *meshes.Mesh, mat *materials.Material)
FrameEnd()
}

View File

@ -13,17 +13,18 @@ out vec3 fragPos;
//MVP = Model View Projection
uniform mat4 modelMat;
uniform mat4 viewMat;
uniform mat4 projMat;
uniform mat4 projViewMat;
void main()
{
vertNormal = mat3(transpose(inverse(modelMat))) * vertNormalIn;
vertUV0 = vertUV0In;
vertColor = vertColorIn;
fragPos = vec3(modelMat * vec4(vertPosIn, 1.0));
gl_Position = projMat * viewMat * modelMat * vec4(vertPosIn, 1.0);
vec4 modelVert = modelMat * vec4(vertPosIn, 1);
fragPos = modelVert.xyz;
gl_Position = projViewMat * modelVert;
}
//shader:fragment

21
res/shaders/depth-map.glsl Executable file
View File

@ -0,0 +1,21 @@
//shader:vertex
#version 410
layout(location=0) in vec3 vertPosIn;
uniform mat4 modelMat;
uniform mat4 projViewMat;
void main()
{
gl_Position = projViewMat * modelMat * vec4(vertPosIn, 1);
}
//shader:fragment
#version 410
void main()
{
// This implicitly writes to the depth buffer with no color operations
// Equivalent: gl_FragDepth = gl_FragCoord.z;
}

45
res/shaders/screen-quad.glsl Executable file
View File

@ -0,0 +1,45 @@
//shader:vertex
#version 410
out vec2 vertUV0;
// Hardcoded vertex positions for a fullscreen quad.
// Format: vec4(pos.x, pos.y, uv0.x, uv0.y)
vec4 quadData[6] = vec4[](
vec4(-1.0, 1.0, 0.0, 1.0),
vec4(-1.0, -1.0, 0.0, 0.0),
vec4(1.0, -1.0, 1.0, 0.0),
vec4(-1.0, 1.0, 0.0, 1.0),
vec4(1.0, -1.0, 1.0, 0.0),
vec4(1.0, 1.0, 1.0, 1.0)
);
uniform vec2 scale = vec2(1, 1);
uniform vec2 offset = vec2(0, 0);
void main()
{
vec4 vertData = quadData[gl_VertexID];
vertUV0 = vertData.zw;
gl_Position = vec4((vertData.xy * scale) + offset, 0.0, 1.0);
}
//shader:fragment
#version 410
struct Material {
sampler2D diffuse;
};
uniform Material material;
in vec2 vertUV0;
out vec4 fragColor;
void main()
{
vec4 diffuseTexColor = texture(material.diffuse, vertUV0);
fragColor = vec4(diffuseTexColor.rgb, 1);
}

54
res/shaders/simple-unlit.glsl Executable file
View File

@ -0,0 +1,54 @@
//shader:vertex
#version 410
layout(location=0) in vec3 vertPosIn;
layout(location=1) in vec3 vertNormalIn;
layout(location=2) in vec2 vertUV0In;
layout(location=3) in vec3 vertColorIn;
out vec3 vertNormal;
out vec2 vertUV0;
out vec3 vertColor;
out vec3 fragPos;
//MVP = Model View Projection
uniform mat4 modelMat;
uniform mat4 projViewMat;
void main()
{
// @TODO: Calculate this on the CPU and send it as a uniform
//
// This produces the normal matrix that multiplies with the model normal to produce the
// world space normal. Based on 'One last thing' section from: https://learnopengl.com/Lighting/Basic-Lighting
vertNormal = mat3(transpose(inverse(modelMat))) * vertNormalIn;
vertUV0 = vertUV0In;
vertColor = vertColorIn;
vec4 modelVert = modelMat * vec4(vertPosIn, 1);
fragPos = modelVert.xyz;
gl_Position = projViewMat * modelVert;
}
//shader:fragment
#version 410
struct Material {
sampler2D diffuse;
};
uniform Material material;
in vec3 vertColor;
in vec3 vertNormal;
in vec2 vertUV0;
in vec3 fragPos;
out vec4 fragColor;
void main()
{
vec4 diffuseTexColor = texture(material.diffuse, vertUV0);
fragColor = vec4(diffuseTexColor.rgb, 1);
}

View File

@ -10,25 +10,29 @@ out vec3 vertNormal;
out vec2 vertUV0;
out vec3 vertColor;
out vec3 fragPos;
out vec4 fragPosDirLight;
//MVP = Model View Projection
uniform mat4 modelMat;
uniform mat4 viewMat;
uniform mat4 projMat;
uniform mat4 projViewMat;
uniform mat4 dirLightProjViewMat;
void main()
{
// @TODO: Calculate this on the CPU and send it as a uniform
//
// This produces the normal matrix that multiplies with the model normal to produce the
// world space normal. Based on 'One last thing' section from: https://learnopengl.com/Lighting/Basic-Lighting
vertNormal = mat3(transpose(inverse(modelMat))) * vertNormalIn;
vertNormal = mat3(transpose(inverse(modelMat))) * vertNormalIn;
vertUV0 = vertUV0In;
vertColor = vertColorIn;
fragPos = vec3(modelMat * vec4(vertPosIn, 1.0));
gl_Position = projMat * viewMat * modelMat * vec4(vertPosIn, 1.0);
vec4 modelVert = modelMat * vec4(vertPosIn, 1);
fragPos = modelVert.xyz;
fragPosDirLight = dirLightProjViewMat * vec4(fragPos, 1);
gl_Position = projViewMat * modelVert;
}
//shader:fragment
@ -48,6 +52,7 @@ struct DirLight {
vec3 dir;
vec3 diffuseColor;
vec3 specularColor;
sampler2D shadowMap;
};
uniform DirLight dirLight;
@ -83,6 +88,7 @@ in vec3 vertColor;
in vec3 vertNormal;
in vec2 vertUV0;
in vec3 fragPos;
in vec4 fragPosDirLight;
out vec4 fragColor;
@ -93,6 +99,46 @@ vec4 emissionTexColor;
vec3 normalizedVertNorm;
vec3 viewDir;
float CalcShadow(sampler2D shadowMap, vec3 lightDir)
{
// Move from clip space to NDC
vec3 projCoords = fragPosDirLight.xyz / fragPosDirLight.w;
// Move from [-1,1] to [0, 1]
projCoords = projCoords * 0.5 + 0.5;
// If sampling outside the depth texture then force 'no shadow'
if(projCoords.z > 1)
return 0;
// currentDepth is the fragment depth from the light's perspective
float currentDepth = projCoords.z;
// Bias in the range [0.005, 0.05] depending on the angle, where a higher
// angle gives a higher bias, as shadow acne gets worse with angle
float bias = max(0.05 * (1 - dot(normalizedVertNorm, lightDir)), 0.005);
// 'Percentage Close Filtering'. B
// Basically get soft shadows by averaging this texel and surrounding ones
float shadow = 0;
vec2 texelSize = 1 / textureSize(shadowMap, 0);
for(int x = -1; x <= 1; ++x)
{
for(int y = -1; y <= 1; ++y)
{
float pcfDepth = texture(shadowMap, projCoords.xy + vec2(x, y) * texelSize).r;
// If our depth is larger than the lights closest depth at the texel we checked (projCoords),
// then there is something closer to the light than us, and so we are in shadow
shadow += currentDepth - bias > pcfDepth ? 1 : 0;
}
}
shadow /= 9;
return shadow;
}
vec3 CalcDirLight()
{
vec3 lightDir = normalize(-dirLight.dir);
@ -106,7 +152,10 @@ vec3 CalcDirLight()
float specularAmount = pow(max(dot(normalizedVertNorm, halfwayDir), 0.0), material.shininess);
vec3 finalSpecular = specularAmount * dirLight.specularColor * specularTexColor.rgb;
return finalDiffuse + finalSpecular;
// Shadow
float shadow = CalcShadow(dirLight.shadowMap, lightDir);
return (finalDiffuse + finalSpecular) * (1 - shadow);
}
vec3 CalcPointLight(PointLight pointLight)
@ -129,7 +178,7 @@ vec3 CalcPointLight(PointLight pointLight)
// attenuation
float distToLight = length(pointLight.pos - fragPos);
float attenuation = 1.0 / (pointLight.constant + pointLight.linear * distToLight + pointLight.quadratic * (distToLight * distToLight));
float attenuation = 1 / (pointLight.constant + pointLight.linear * distToLight + pointLight.quadratic * (distToLight * distToLight));
return (finalDiffuse + finalSpecular) * attenuation;
}
@ -146,7 +195,7 @@ vec3 CalcSpotLight(SpotLight light)
// light after outer cutoff
float theta = dot(fragToLightDir, normalize(-light.dir));
float epsilon = (light.innerCutoff - light.outerCutoff);
float intensity = clamp((theta - light.outerCutoff) / epsilon, 0.0, 1.0);
float intensity = clamp((theta - light.outerCutoff) / epsilon, 0.0, 1);
if (intensity == 0)
return vec3(0);

View File

@ -8,13 +8,12 @@ layout(location=3) in vec3 vertColorIn;
out vec3 vertUV0;
uniform mat4 viewMat;
uniform mat4 projMat;
uniform mat4 projViewMat;
void main()
{
vertUV0 = vec3(vertPosIn.x, vertPosIn.y, -vertPosIn.z);
vec4 pos = projMat * viewMat * vec4(vertPosIn, 1.0);
vec4 pos = projViewMat * vec4(vertPosIn, 1.0);
gl_Position = pos.xyww;
}