Files
nmage/meshes/mesh.go
2024-05-07 05:23:36 +04:00

252 lines
7.6 KiB
Go
Executable File

package meshes
import (
"errors"
"github.com/bloeys/assimp-go/asig"
"github.com/bloeys/gglm/gglm"
"github.com/bloeys/nmage/assert"
"github.com/bloeys/nmage/buffers"
)
type SubMesh struct {
BaseVertex int32
BaseIndex uint32
IndexCount int32
}
type Mesh struct {
Name string
/*
Vao has the following shader attribute layout:
- Loc0: Pos
- Loc1: Normal
- Loc2: UV0
- Loc3: Tangent
- (Optional) Color
Optional stuff appear in the order in this list, depending on what other optional stuff exists.
For example:
- If color exists it will be in Loc3, otherwise it is unset
*/
Vao buffers.VertexArray
SubMeshes []SubMesh
}
var (
// DefaultMeshLoadFlags are the flags always applied when loading a new mesh regardless
// of what post process flags are used when loading a mesh.
//
// Defaults to: asig.PostProcessTriangulate | asig.PostProcessCalcTangentSpace;
// Note: changing this will break the normal lit shaders, which expect tangents to be there
DefaultMeshLoadFlags asig.PostProcess = asig.PostProcessTriangulate | asig.PostProcessCalcTangentSpace
)
func NewMesh(name, modelPath string, postProcessFlags asig.PostProcess) (Mesh, error) {
finalPostProcessFlags := DefaultMeshLoadFlags | postProcessFlags
scene, release, err := asig.ImportFile(modelPath, finalPostProcessFlags)
if err != nil {
return Mesh{}, errors.New("Failed to load model. Err: " + err.Error())
}
defer release()
if len(scene.Meshes) == 0 {
return Mesh{}, errors.New("No meshes found in file: " + modelPath)
}
mesh := Mesh{
Name: name,
Vao: buffers.NewVertexArray(),
SubMeshes: make([]SubMesh, 0, 1),
}
vbo := buffers.NewVertexBuffer()
ibo := buffers.NewIndexBuffer()
// Estimate a useful prealloc capacity based on the first submesh that has vertex pos+normals+tangents+texCoords
vertexBufDataCapacity := len(scene.Meshes[0].Vertices) * 3 * 3 * 3 * 2
// Increase capacity depending on what the mesh has
if len(scene.Meshes[0].ColorSets) > 0 && len(scene.Meshes[0].ColorSets[0]) > 0 {
vertexBufDataCapacity *= 4
}
var vertexBufData []float32 = make([]float32, 0, vertexBufDataCapacity)
// Initial size assumes 3 indices per face
var indexBufData []uint32 = make([]uint32, 0, len(scene.Meshes[0].Faces)*3)
// fmt.Printf("\nMesh %s has %d meshe(s) with first mesh having %d vertices\n", name, len(scene.Meshes), len(scene.Meshes[0].Vertices))
for i := 0; i < len(scene.Meshes); i++ {
sceneMesh := scene.Meshes[i]
// We always want tangents and UV0
if len(sceneMesh.Tangents) == 0 {
sceneMesh.Tangents = make([]gglm.Vec3, len(sceneMesh.Vertices))
}
if len(sceneMesh.TexCoords[0]) == 0 {
sceneMesh.TexCoords[0] = make([]gglm.Vec3, len(sceneMesh.Vertices))
}
hasColorSet0 := len(sceneMesh.ColorSets) > 0 && len(sceneMesh.ColorSets[0]) > 0
layoutToUse := []buffers.Element{
{ElementType: buffers.DataTypeVec3}, // Position
{ElementType: buffers.DataTypeVec3}, // Normals
{ElementType: buffers.DataTypeVec3}, // Tangents
{ElementType: buffers.DataTypeVec2}, // UV0
}
if hasColorSet0 {
layoutToUse = append(layoutToUse, buffers.Element{ElementType: buffers.DataTypeVec4})
}
if i == 0 {
vbo.SetLayout(layoutToUse...)
} else {
// @TODO @NOTE: This requirement is because we are using one VAO+VBO for all
// the meshes and so the buffer must have one format.
//
// If we want to allow different layouts then we can simply create one vbo per layout and put
// meshes of the same layout in the same vbo, and we store the index of the vbo the mesh
// uses in the submesh struct.
firstSubmeshLayout := vbo.GetLayout()
assert.T(len(firstSubmeshLayout) == len(layoutToUse), "Vertex layout of submesh '%d' of mesh '%s' at path '%s' does not equal vertex layout of the first submesh. Original layout: %v; This layout: %v", i, name, modelPath, firstSubmeshLayout, layoutToUse)
for i := 0; i < len(firstSubmeshLayout); i++ {
assert.T(firstSubmeshLayout[i].ElementType == layoutToUse[i].ElementType, "Vertex layout of submesh '%d' of mesh '%s' at path '%s' does not equal vertex layout of the first submesh. Original layout: %v; This layout: %v", i, name, modelPath, firstSubmeshLayout, layoutToUse)
}
}
arrs := []arrToInterleave{
{V3s: sceneMesh.Vertices},
{V3s: sceneMesh.Normals},
{V3s: sceneMesh.Tangents},
{V2s: v3sToV2s(sceneMesh.TexCoords[0])},
}
if hasColorSet0 {
arrs = append(arrs, arrToInterleave{V4s: sceneMesh.ColorSets[0]})
}
indices := flattenFaces(sceneMesh.Faces)
mesh.SubMeshes = append(mesh.SubMeshes, SubMesh{
// Index of the vertex to start from (e.g. if index buffer says use vertex 5, and BaseVertex=3, the vertex used will be vertex 8)
BaseVertex: int32(len(vertexBufData)*4) / vbo.Stride,
// Which index (in the index buffer) to start from
BaseIndex: uint32(len(indexBufData)),
// How many indices in this submesh
IndexCount: int32(len(indices)),
})
vertexBufData = append(vertexBufData, interleave(arrs...)...)
indexBufData = append(indexBufData, indices...)
}
vbo.SetData(vertexBufData, buffers.BufUsage_Static)
ibo.SetData(indexBufData)
mesh.Vao.AddVertexBuffer(vbo)
mesh.Vao.SetIndexBuffer(ibo)
// This is needed so that if you load meshes one after the other the
// following mesh doesn't attach its vbo/ibo to this vao
mesh.Vao.UnBind()
return mesh, nil
}
func v3sToV2s(v3s []gglm.Vec3) []gglm.Vec2 {
v2s := make([]gglm.Vec2, len(v3s))
for i := 0; i < len(v3s); i++ {
v2s[i] = gglm.Vec2{
Data: [2]float32{v3s[i].X(), v3s[i].Y()},
}
}
return v2s
}
type arrToInterleave struct {
V2s []gglm.Vec2
V3s []gglm.Vec3
V4s []gglm.Vec4
}
func (a *arrToInterleave) get(i int) []float32 {
assert.T(len(a.V2s) == 0 || len(a.V3s) == 0, "One array should be set in arrToInterleave, but multiple arrays are set")
assert.T(len(a.V2s) == 0 || len(a.V4s) == 0, "One array should be set in arrToInterleave, but multiple arrays are set")
assert.T(len(a.V3s) == 0 || len(a.V4s) == 0, "One array should be set in arrToInterleave, but multiple arrays are set")
if len(a.V2s) > 0 {
return a.V2s[i].Data[:]
} else if len(a.V3s) > 0 {
return a.V3s[i].Data[:]
} else {
return a.V4s[i].Data[:]
}
}
func interleave(arrs ...arrToInterleave) []float32 {
assert.T(len(arrs) > 0, "No input sent to interleave")
assert.T(len(arrs[0].V2s) > 0 || len(arrs[0].V3s) > 0 || len(arrs[0].V4s) > 0, "Interleave arrays are empty")
elementCount := 0
if len(arrs[0].V2s) > 0 {
elementCount = len(arrs[0].V2s)
} else if len(arrs[0].V3s) > 0 {
elementCount = len(arrs[0].V3s)
} else {
elementCount = len(arrs[0].V4s)
}
//Calculate final size of the float buffer
totalSize := 0
for i := 0; i < len(arrs); i++ {
assert.T(len(arrs[i].V2s) == elementCount || len(arrs[i].V3s) == elementCount || len(arrs[i].V4s) == elementCount, "Mesh vertex data given to interleave is not the same length")
if len(arrs[i].V2s) > 0 {
totalSize += len(arrs[i].V2s) * 2
} else if len(arrs[i].V3s) > 0 {
totalSize += len(arrs[i].V3s) * 3
} else {
totalSize += len(arrs[i].V4s) * 4
}
}
out := make([]float32, 0, totalSize)
for i := 0; i < elementCount; i++ {
for arrToUse := 0; arrToUse < len(arrs); arrToUse++ {
out = append(out, arrs[arrToUse].get(i)...)
}
}
return out
}
func flattenFaces(faces []asig.Face) []uint32 {
assert.T(len(faces[0].Indices) == 3, "Face doesn't have 3 indices. Index count: %v\n", len(faces[0].Indices))
uints := make([]uint32, len(faces)*3)
for i := 0; i < len(faces); i++ {
uints[i*3+0] = uint32(faces[i].Indices[0])
uints[i*3+1] = uint32(faces[i].Indices[1])
uints[i*3+2] = uint32(faces[i].Indices[2])
}
return uints
}