Intersection benchmarks

This commit is contained in:
bloeys
2022-06-11 08:13:34 +04:00
parent c55e5b0f01
commit d4b9c6d3c7
3 changed files with 138 additions and 5 deletions

BIN
.res/bench-union-10-million.png Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

View File

@ -12,6 +12,10 @@ get intersections.
- [When to use NSet](#when-to-use-nset)
- [Usage](#usage)
- [Benchmarks](#benchmarks)
- [Equality](#equality)
- [Extracting elements](#extracting-elements)
- [Intersection](#intersection)
- [Union](#union)
- [How NSet works](#how-nset-works)
- [Memory characteristics](#memory-characteristics)
@ -132,6 +136,8 @@ myMap := make(map[uint16], 100)
Map benefits from sizing while NSet isn't affected, but in both cases NSet remains faster.
### Equality
Another case where NSet really shines is checking if two sets are equal.
Below is a benchmark that checks whether two NSets/maps with 10 Million elements in each are equal (They are equal, which is the worst case).
Here NSet finishes in `0.1ms` but Map takes almost a second with `813ms`.
@ -140,6 +146,8 @@ Here NSet finishes in `0.1ms` but Map takes almost a second with `813ms`.
Next we have `GetAllElements`, which simply returns an array of all the elements of NSet/Map (note this is dangerous in NSet. See [Memory characteristics](#memory-characteristics)).
![Benchmarking GetAllElements with 10,000,000 elements](.res/bench-getAllElements-10-million.png)
### Extracting elements
With `GetAllElements` NSet is faster when its elements are closer together value wise (or if you have many numbers), but gets a lot slower when
dealing with a few random numbers with a big difference between them. This is because you might get two numbers like `1` and `1_000_000` which NSet
will store in two far away places with a lot of nothing in between. In a map these will be stored close together.
@ -149,11 +157,20 @@ while map takes `~95ms`. Map scales with the amount of elements, while NSet is a
Similar to getting elements is intersection:
![Benchmarking GetIntersection with 10,000,000 elements](.res/bench-getIntersection-10-million.png)
### Intersection
![Benchmarking GetIntersection with 10,000,000 elements](./.res/bench-getIntersection-10-million.png)
Here NSet is always many times faster, but the effect of number distribution on NSet's performance is clear, while map's performance
only scales with number of elements.
### Union
![Benchmarking GetUnion with 10,000,000 elements](./.res/bench-union-10-million.png)
With unions NSet is a clear winner in all cases where for 10M elements NSet takes between `~0.37ms` and `~180ms`, while
map takes `~1959ms`, around 10x slower.
## How NSet works
NSet works by using a single bit to indicate whether a number exists or not.

View File

@ -558,7 +558,7 @@ func BenchmarkNSetGetAllElements(b *testing.B) {
b.StopTimer()
s1 := nset.NewNSet[uint32]()
for i := uint32(0); i < 10_000_000; i++ {
for i := uint32(0); i < maxBenchSize; i++ {
s1.Add(i)
}
b.StartTimer()
@ -576,7 +576,7 @@ func BenchmarkMapGetAllElements(b *testing.B) {
b.StopTimer()
m1 := map[uint32]struct{}{}
for i := uint32(0); i < 10_000_000; i++ {
for i := uint32(0); i < maxBenchSize; i++ {
m1[i] = struct{}{}
}
b.StartTimer()
@ -605,7 +605,7 @@ func BenchmarkNSetGetAllElementsRand(b *testing.B) {
rand.Seed(RandSeed)
s1 := nset.NewNSet[uint32]()
for i := uint32(0); i < 10_000_000; i++ {
for i := uint32(0); i < maxBenchSize; i++ {
s1.Add(rand.Uint32())
}
b.StartTimer()
@ -625,7 +625,7 @@ func BenchmarkMapGetAllElementsRand(b *testing.B) {
rand.Seed(RandSeed)
m1 := map[uint32]struct{}{}
for i := uint32(0); i < 10_000_000; i++ {
for i := uint32(0); i < maxBenchSize; i++ {
m1[rand.Uint32()] = struct{}{}
}
@ -647,3 +647,119 @@ func BenchmarkMapGetAllElementsRand(b *testing.B) {
elementCount = len(elements)
}
var unionSize int
func BenchmarkNSetUnion(b *testing.B) {
b.StopTimer()
s1 := nset.NewNSet[uint32]()
s2 := nset.NewNSet[uint32]()
for i := uint32(0); i < maxBenchSize; i++ {
s1.Add(i)
s2.Add(i)
}
b.StartTimer()
var union *nset.NSet[uint32]
for i := 0; i < b.N; i++ {
union = nset.UnionSets(s1, s2)
}
unionSize = int(union.StorageUnitCount)
}
func BenchmarkMapUnion(b *testing.B) {
b.StopTimer()
m1 := map[uint32]struct{}{}
m2 := map[uint32]struct{}{}
for i := uint32(0); i < maxBenchSize; i++ {
m1[i] = struct{}{}
m2[i] = struct{}{}
}
b.StartTimer()
unionFunc := func(m1, m2 map[uint32]struct{}) map[uint32]struct{} {
u := make(map[uint32]struct{}, len(m1))
for k := range m1 {
u[k] = struct{}{}
}
for k := range m2 {
u[k] = struct{}{}
}
return u
}
var union map[uint32]struct{}
for i := 0; i < b.N; i++ {
union = unionFunc(m1, m2)
}
unionSize = len(union)
}
func BenchmarkNSetUnionRand(b *testing.B) {
b.StopTimer()
rand.Seed(RandSeed)
s1 := nset.NewNSet[uint32]()
s2 := nset.NewNSet[uint32]()
for i := uint32(0); i < maxBenchSize; i++ {
r := rand.Uint32()
s1.Add(r)
s2.Add(r)
}
b.StartTimer()
var union *nset.NSet[uint32]
for i := 0; i < b.N; i++ {
union = nset.UnionSets(s1, s2)
}
unionSize = int(union.StorageUnitCount)
}
func BenchmarkMapUnionRand(b *testing.B) {
b.StopTimer()
rand.Seed(RandSeed)
m1 := map[uint32]struct{}{}
m2 := map[uint32]struct{}{}
for i := uint32(0); i < maxBenchSize; i++ {
r := rand.Uint32()
m1[r] = struct{}{}
m2[r] = struct{}{}
}
b.StartTimer()
unionFunc := func(m1, m2 map[uint32]struct{}) map[uint32]struct{} {
u := make(map[uint32]struct{}, len(m1))
for k := range m1 {
u[k] = struct{}{}
}
for k := range m2 {
u[k] = struct{}{}
}
return u
}
var union map[uint32]struct{}
for i := 0; i < b.N; i++ {
union = unionFunc(m1, m2)
}
unionSize = len(union)
}