Files
nterm/glyphs/glyphs.go
2022-08-02 05:32:56 +04:00

820 lines
23 KiB
Go
Executable File

package glyphs
import (
"errors"
"fmt"
"math"
"unicode"
"github.com/bloeys/gglm/gglm"
"github.com/bloeys/nmage/assets"
"github.com/bloeys/nmage/buffers"
"github.com/bloeys/nmage/materials"
"github.com/bloeys/nmage/meshes"
"github.com/bloeys/nterm/assert"
"github.com/bloeys/nterm/consts"
"github.com/go-gl/gl/v4.1-core/gl"
"github.com/golang/freetype/truetype"
)
const (
DefaultGlyphsPerBatch = 4 * 1024
floatsPerGlyph = 13
invalidRune = unicode.ReplacementChar
)
var (
RuneInfos map[rune]RuneInfo
)
type GlyphRendOpt uint64
const (
GlyphRendOpt_None GlyphRendOpt = 0
GlyphRendOpt_BgColor GlyphRendOpt = 1 << (iota - 1)
GlyphRendOpt_Underline
GlyphRendOpt_COUNT GlyphRendOpt = iota
)
type GlyphRendOptValues struct {
BgColor *gglm.Vec4
}
type GlyphRend struct {
Atlas *FontAtlas
AtlasTex *assets.Texture
GlyphMesh *meshes.Mesh
InstancedBuf buffers.Buffer
GlyphMat *materials.Material
TextRunsBuf []TextRun
GlyphCount uint32
//Luckily slices still work, so for now we will use our slice as an array (no appending)
GlyphVBO []float32
ScreenWidth int32
ScreenHeight int32
SpacesPerTab uint
Opts GlyphRendOpt
OptValues GlyphRendOptValues
}
func (gr *GlyphRend) SetOpts(opts ...GlyphRendOpt) {
for _, v := range opts {
assert.T(v <= (1<<(GlyphRendOpt_COUNT-2)), "Invalid opts of value %d", opts)
if v == GlyphRendOpt_None {
gr.Opts = GlyphRendOpt_None
} else {
gr.Opts |= v
}
}
gl.ProgramUniform1ui(gr.GlyphMat.ShaderProg.ID, gr.GlyphMat.GetUnifLoc("opts1"), uint32(gr.Opts))
}
func (gr *GlyphRend) HasOpt(opt GlyphRendOpt) bool {
return gr.Opts&opt != 0
}
//DrawTextOpenGLAbs prepares text that will be drawn on the next GlyphRend.Draw call.
//screenPos is in the range [0,1], where (0,0) is the bottom left.
//Color is RGBA in the range [0,1].
func (gr *GlyphRend) DrawTextOpenGL01String(text string, screenPos *gglm.Vec3, color *gglm.Vec4) gglm.Vec3 {
screenPos.Set(screenPos.X()*float32(gr.ScreenWidth), screenPos.Y()*float32(gr.ScreenHeight), screenPos.Z())
return gr.DrawTextOpenGLAbsString(text, screenPos, color)
}
//DrawTextOpenGLAbsString prepares text that will be drawn on the next GlyphRend.Draw call.
//screenPos is in the range ([0,ScreenWidth],[0,ScreenHeight]) where (0,0) is bottom left.
//Color is RGBA in the range [0,1].
func (gr *GlyphRend) DrawTextOpenGLAbsString(text string, screenPos *gglm.Vec3, color *gglm.Vec4) gglm.Vec3 {
return gr.DrawTextOpenGLAbs([]rune(text), screenPos, color)
}
func (gr *GlyphRend) DrawTextOpenGL01(text []rune, screenPos *gglm.Vec3, color *gglm.Vec4) gglm.Vec3 {
screenPos.Set(screenPos.X()*float32(gr.ScreenWidth), screenPos.Y()*float32(gr.ScreenHeight), screenPos.Z())
return gr.DrawTextOpenGLAbs(text, screenPos, color)
}
//DrawTextOpenGLAbsString prepares text that will be drawn on the next GlyphRend.Draw call.
//screenPos is in the range ([0,ScreenWidth],[0,ScreenHeight]) where (0,0) is bottom left.
//Color is RGBA in the range [0,1].
func (gr *GlyphRend) DrawTextOpenGLAbs(text []rune, startPos *gglm.Vec3, color *gglm.Vec4) gglm.Vec3 {
runs := gr.TextRunsBuf[:]
gr.GetTextRuns(text, &runs)
if runs == nil {
return *startPos
}
drawPos := startPos.Clone()
lineHeightF32 := float32(gr.Atlas.LineHeight)
bufIndex := gr.GlyphCount * floatsPerGlyph
for runIndex := 0; runIndex < len(runs); runIndex++ {
run := &runs[runIndex]
prevRune := invalidRune
screenWidthF32 := float32(gr.ScreenWidth)
if run.IsLtr {
for i := 0; i < len(run.Runes); i++ {
if run.Runes[i] == '\n' {
drawPos.SetXYZ(startPos.X(), drawPos.Y()-lineHeightF32, startPos.Z())
}
gr.drawRune(run, i, prevRune, drawPos, color, lineHeightF32, &bufIndex)
prevRune = run.Runes[i]
//Wrap
if drawPos.X()+gr.Atlas.SpaceAdvance >= screenWidthF32 {
drawPos.SetXYZ(startPos.X(), drawPos.Y()-lineHeightF32, startPos.Z())
// startPos.SetY(startPos.Y() - lineHeightF32)
// *drawPos = *startPos.Clone()
}
}
} else {
for i := len(run.Runes) - 1; i >= 0; i-- {
if run.Runes[i] == '\n' {
drawPos.SetXYZ(startPos.X(), drawPos.Y()-lineHeightF32, startPos.Z())
}
gr.drawRune(run, i, prevRune, drawPos, color, lineHeightF32, &bufIndex)
prevRune = run.Runes[i]
//Wrap
if drawPos.X()+gr.Atlas.SpaceAdvance >= screenWidthF32 {
drawPos.SetXYZ(startPos.X(), drawPos.Y()-lineHeightF32, startPos.Z())
// startPos.SetY(startPos.Y() - lineHeightF32)
// *drawPos = *startPos.Clone()
}
}
}
if consts.Mode_Debug && PrintPositions {
println("")
}
}
return *drawPos
}
func (gr *GlyphRend) DrawTextOpenGLAbsRect(text []rune, rectTopLeft *gglm.Vec3, rectBotRight *gglm.Vec2, color *gglm.Vec4) gglm.Vec3 {
runs := gr.TextRunsBuf[:]
gr.GetTextRuns(text, &runs)
if runs == nil {
return *rectTopLeft
}
drawPos := rectTopLeft.Clone()
lineHeightF32 := float32(gr.Atlas.LineHeight)
bufIndex := gr.GlyphCount * floatsPerGlyph
for runIndex := 0; runIndex < len(runs); runIndex++ {
run := &runs[runIndex]
prevRune := invalidRune
if run.IsLtr {
for i := 0; i < len(run.Runes); i++ {
if run.Runes[i] == '\n' {
drawPos.SetXYZ(rectTopLeft.X(), drawPos.Y()-lineHeightF32, rectTopLeft.Z())
}
gr.drawRune(run, i, prevRune, drawPos, color, lineHeightF32, &bufIndex)
prevRune = run.Runes[i]
//Wrap
if drawPos.X()+gr.Atlas.SpaceAdvance >= rectBotRight.X() {
drawPos.SetXYZ(rectTopLeft.X(), drawPos.Y()-lineHeightF32, rectTopLeft.Z())
// rectTopLeft.SetY(rectTopLeft.Y() - lineHeightF32)
// *drawPos = *rectTopLeft.Clone()
}
}
} else {
for i := len(run.Runes) - 1; i >= 0; i-- {
if run.Runes[i] == '\n' {
drawPos.SetXYZ(rectTopLeft.X(), drawPos.Y()-lineHeightF32, rectTopLeft.Z())
}
gr.drawRune(run, i, prevRune, drawPos, color, lineHeightF32, &bufIndex)
prevRune = run.Runes[i]
//Wrap
if drawPos.X()+gr.Atlas.SpaceAdvance >= rectBotRight.X() {
drawPos.SetXYZ(rectTopLeft.X(), drawPos.Y()-lineHeightF32, rectTopLeft.Z())
// rectTopLeft.SetY(rectTopLeft.Y() - lineHeightF32)
// *drawPos = *rectTopLeft.Clone()
}
}
}
if consts.Mode_Debug && PrintPositions {
println("")
}
}
return *drawPos
}
func (gr *GlyphRend) DrawTextOpenGLAbsRectWithStartPos(text []rune, startPos, rectTopLeft *gglm.Vec3, rectBotRight *gglm.Vec2, color *gglm.Vec4) gglm.Vec3 {
runs := gr.TextRunsBuf[:]
gr.GetTextRuns(text, &runs)
if runs == nil {
return *startPos
}
drawPos := startPos.Clone()
lineHeightF32 := float32(gr.Atlas.LineHeight)
bufIndex := gr.GlyphCount * floatsPerGlyph
for runIndex := 0; runIndex < len(runs); runIndex++ {
run := &runs[runIndex]
prevRune := invalidRune
if run.IsLtr {
for i := 0; i < len(run.Runes); i++ {
if run.Runes[i] == '\n' {
drawPos.SetXYZ(rectTopLeft.X(), drawPos.Y()-lineHeightF32, rectTopLeft.Z())
}
gr.drawRune(run, i, prevRune, drawPos, color, lineHeightF32, &bufIndex)
prevRune = run.Runes[i]
//Wrap
if drawPos.X()+gr.Atlas.SpaceAdvance >= rectBotRight.X() {
drawPos.SetXYZ(rectTopLeft.X(), drawPos.Y()-lineHeightF32, rectTopLeft.Z())
// rectTopLeft.SetY(rectTopLeft.Y() - lineHeightF32)
// *drawPos = *rectTopLeft.Clone()
}
}
} else {
for i := len(run.Runes) - 1; i >= 0; i-- {
if run.Runes[i] == '\n' {
drawPos.SetXYZ(rectTopLeft.X(), drawPos.Y()-lineHeightF32, rectTopLeft.Z())
}
gr.drawRune(run, i, prevRune, drawPos, color, lineHeightF32, &bufIndex)
prevRune = run.Runes[i]
//Wrap
if drawPos.X()+gr.Atlas.SpaceAdvance >= rectBotRight.X() {
drawPos.SetXYZ(rectTopLeft.X(), drawPos.Y()-lineHeightF32, rectTopLeft.Z())
// rectTopLeft.SetY(rectTopLeft.Y() - lineHeightF32)
// *drawPos = *rectTopLeft.Clone()
}
}
}
if consts.Mode_Debug && PrintPositions {
println("")
}
}
return *drawPos
}
// @Debug
var PrintPositions bool
func (gr *GlyphRend) GridSize() (w, h int64) {
w = int64(gr.ScreenWidth) / int64(gr.Atlas.SpaceAdvance)
h = int64(gr.ScreenHeight) / int64(gr.Atlas.LineHeight)
return w, h
}
func (gr *GlyphRend) ScreenPosToGridPos(x, y float32) (gridX, gridY float32) {
gridX = floorF32(x / gr.Atlas.SpaceAdvance)
gridY = floorF32(y / gr.Atlas.LineHeight)
return gridX, gridY
}
func (gr *GlyphRend) drawRune(run *TextRun, i int, prevRune rune, pos *gglm.Vec3, color *gglm.Vec4, lineHeightF32 float32, bufIndex *uint32) {
r := run.Runes[i]
if r == ' ' {
pos.AddX(gr.Atlas.SpaceAdvance)
return
} else if r == '\t' {
pos.AddX(gr.Atlas.SpaceAdvance * float32(gr.SpacesPerTab))
return
}
var g FontAtlasGlyph
if run.IsLtr {
if i < len(run.Runes)-1 {
//start or middle of sentence
g = GlyphFromRunes(gr.Atlas.Glyphs, r, prevRune, run.Runes[i+1])
} else {
//Last character
g = GlyphFromRunes(gr.Atlas.Glyphs, r, prevRune, invalidRune)
}
} else {
if i > 0 {
//start or middle of sentence
g = GlyphFromRunes(gr.Atlas.Glyphs, r, run.Runes[i-1], prevRune)
} else {
//Last character
g = GlyphFromRunes(gr.Atlas.Glyphs, r, invalidRune, prevRune)
}
}
//We must adjust char positioning according to: https://developer.apple.com/library/archive/documentation/TextFonts/Conceptual/CocoaTextArchitecture/Art/glyph_metrics_2x.png
drawPos := *pos
//The flooring to an integer pixel must happen AFTER the (potentially) fractional adjustments have been made.
//This is what the truetype face.Rasterizer does and seems to give good results. Do NOT floor bearing/descent first.
drawPos.SetX(floorF32(drawPos.X() + g.BearingX))
drawPos.SetY(floorF32(drawPos.Y() - g.Descent))
if consts.Mode_Debug && PrintPositions {
oldXY := gglm.NewVec2(pos.X(), pos.Y())
newXY := gglm.NewVec2(drawPos.X(), drawPos.Y())
fmt.Printf("char=%s; PosBefore=%s, PosAfter=%s; Bearing/Decent=(%f, %f)\n", string(r), oldXY.String(), newXY.String(), g.BearingX, g.Descent)
}
//Add the glyph information to the vbo
if gr.HasOpt(GlyphRendOpt_BgColor) {
//UV
gr.GlyphVBO[*bufIndex+0] = -1
gr.GlyphVBO[*bufIndex+1] = -1
*bufIndex += 2
//UVSize
gr.GlyphVBO[*bufIndex+0] = 0
gr.GlyphVBO[*bufIndex+1] = 0
*bufIndex += 2
//Color
gr.GlyphVBO[*bufIndex+0] = gr.OptValues.BgColor.R()
gr.GlyphVBO[*bufIndex+1] = gr.OptValues.BgColor.G()
gr.GlyphVBO[*bufIndex+2] = gr.OptValues.BgColor.B()
gr.GlyphVBO[*bufIndex+3] = gr.OptValues.BgColor.A()
*bufIndex += 4
//Model Pos
gr.GlyphVBO[*bufIndex+0] = pos.X()
gr.GlyphVBO[*bufIndex+1] = pos.Y()
gr.GlyphVBO[*bufIndex+2] = pos.Z()
*bufIndex += 3
//Model Scale
gr.GlyphVBO[*bufIndex+0] = gr.Atlas.SpaceAdvance
gr.GlyphVBO[*bufIndex+1] = lineHeightF32
*bufIndex += 2
gr.GlyphCount++
if gr.GlyphCount == DefaultGlyphsPerBatch {
gr.Draw()
*bufIndex = 0
}
}
//UV
gr.GlyphVBO[*bufIndex+0] = g.U
gr.GlyphVBO[*bufIndex+1] = g.V
*bufIndex += 2
//UVSize
gr.GlyphVBO[*bufIndex+0] = g.SizeU
gr.GlyphVBO[*bufIndex+1] = g.SizeV
*bufIndex += 2
//Color
gr.GlyphVBO[*bufIndex+0] = color.R()
gr.GlyphVBO[*bufIndex+1] = color.G()
gr.GlyphVBO[*bufIndex+2] = color.B()
gr.GlyphVBO[*bufIndex+3] = color.A()
*bufIndex += 4
//Model Pos
gr.GlyphVBO[*bufIndex+0] = drawPos.X()
gr.GlyphVBO[*bufIndex+1] = drawPos.Y()
gr.GlyphVBO[*bufIndex+2] = drawPos.Z()
*bufIndex += 3
//Model Scale
gr.GlyphVBO[*bufIndex+0] = g.SizeU
gr.GlyphVBO[*bufIndex+1] = g.SizeV
*bufIndex += 2
pos.AddX(g.Advance)
//If we fill the buffer we issue a draw call
gr.GlyphCount++
if gr.GlyphCount == DefaultGlyphsPerBatch {
gr.Draw()
*bufIndex = 0
}
}
// func roundF32(x float32) float32 {
// return float32(math.Round(float64(x)))
// }
// func ceilF32(x float32) float32 {
// return float32(math.Ceil(float64(x)))
// }
func floorF32(x float32) float32 {
return float32(math.Floor(float64(x)))
}
type TextRun struct {
Runes []rune
IsLtr bool
}
func (gr *GlyphRend) GetTextRuns(rs []rune, textRunsBuf *[]TextRun) {
if len(rs) == 0 {
return
}
runs := textRunsBuf
currRunScript := RuneInfos[rs[0]].ScriptTable
//TODO: We need to detect neutral characters through BiDi category, not being in common
//TODO: Diacritics go into things like 'Category_Mn' and don't necessairly follow the parent script (e.g. Arabic diacritics are NOT in unicode.Arabic).
//They should be part of the same run but right now we split them into their own run.
runStartIndex := 0
for i := 1; i < len(rs); i++ {
r := rs[i]
ri := RuneInfos[r]
//A run is a set of characters using the same script (and other metrics) minus leading/trailing neutral characters
if ri.ScriptTable == currRunScript || ri.ScriptTable == unicode.Common {
continue
}
//We reached a new run so count trailing neutrals to be removed from this run
newRunRunes := rs[runStartIndex:i]
trailingCommonsCount := 0
for j := len(newRunRunes) - 1; j >= 0; j-- {
if !unicode.Is(unicode.Common, newRunRunes[j]) {
break
}
trailingCommonsCount++
}
//If we have a run without trailing neutrals or had a run of just neutrals (e.g. starting sentence with spaces)
//then the full run is added, otherwise we slice the run to put neturals in a separate run
if trailingCommonsCount == 0 || len(newRunRunes) == trailingCommonsCount {
*runs = append(*runs, TextRun{Runes: newRunRunes})
} else {
*runs = append(*runs,
TextRun{Runes: newRunRunes[:len(newRunRunes)-trailingCommonsCount]}, TextRun{Runes: newRunRunes[len(newRunRunes)-trailingCommonsCount:]})
}
//The removed neutrals are included as the start of the new run
runStartIndex = i
currRunScript = ri.ScriptTable
}
*runs = append(*runs, TextRun{Runes: rs[runStartIndex:]})
//Detect directionality of each run
for i := 0; i < len(*runs); i++ {
run := &(*runs)[i]
bidiCat := BidiCategory_L
for _, r := range run.Runes {
if !unicode.Is(unicode.Common, r) {
bidiCat = RuneInfos[r].BidiCat
break
}
}
run.IsLtr = !(bidiCat == BidiCategory_R || bidiCat == BidiCategory_AL || bidiCat == BidiCategory_RLE || bidiCat == BidiCategory_RLO || bidiCat == BidiCategory_RLI || bidiCat == BidiCategory_RLM)
}
}
//GlyphFromRunes does shaping where it selects the proper rune based (e.g. end Alef) on the surrounding runes
func GlyphFromRunes(glyphTable map[rune]FontAtlasGlyph, curr, prev, next rune) FontAtlasGlyph {
//PERF: Map access times are absolute garbage to the point that ~85%+ of the runtime of this func
//is spent reading from maps :). Using nSet or fMap or similar would be a lot better.
type PosCtx int
const (
PosCtx_start PosCtx = iota
PosCtx_mid
PosCtx_end
PosCtx_isolated
)
prevIsValid := prev != invalidRune
nextIsValid := next != invalidRune
//Isolated case
if !prevIsValid && !nextIsValid {
return glyphTable[curr]
}
ri := RuneInfos[curr]
if ri.JoinType == JoiningType_None || ri.JoinType == JoiningType_Transparent {
return glyphTable[curr]
}
prevJoinType := RuneInfos[prev].JoinType
joinWithRight := prevIsValid &&
(prevJoinType == JoiningType_Dual || prevJoinType == JoiningType_Left || prevJoinType == JoiningType_Causing) &&
(ri.JoinType == JoiningType_Dual || ri.JoinType == JoiningType_Right)
nextJoinType := RuneInfos[next].JoinType
joinWithLeft := nextIsValid &&
(nextJoinType == JoiningType_Dual || nextJoinType == JoiningType_Right || nextJoinType == JoiningType_Causing) &&
(ri.JoinType == JoiningType_Dual || ri.JoinType == JoiningType_Left)
var ctx PosCtx
if joinWithRight && joinWithLeft {
ctx = PosCtx_mid
} else if joinWithLeft {
ctx = PosCtx_start
} else if joinWithRight {
ctx = PosCtx_end
} else {
ctx = PosCtx_isolated
}
//This is only needed for Arabic (I think)
switch ctx {
case PosCtx_start:
for i := 0; i < len(ri.EquivalentRunes); i++ {
otherRune := ri.EquivalentRunes[i]
otherDecompTag := RuneInfos[otherRune].DecompTag
if otherDecompTag == DecompTag_initial {
curr = otherRune
break
}
}
case PosCtx_mid:
for i := 0; i < len(ri.EquivalentRunes); i++ {
otherRune := ri.EquivalentRunes[i]
otherDecompTag := RuneInfos[otherRune].DecompTag
if otherDecompTag == DecompTag_medial {
curr = otherRune
break
}
}
case PosCtx_end:
for i := 0; i < len(ri.EquivalentRunes); i++ {
otherRune := ri.EquivalentRunes[i]
otherDecompTag := RuneInfos[otherRune].DecompTag
if otherDecompTag == DecompTag_final {
curr = otherRune
break
}
}
}
return glyphTable[curr]
}
func (gr *GlyphRend) Draw() {
if gr.GlyphCount == 0 {
return
}
gl.BindVertexArray(gr.InstancedBuf.VAOID)
gl.BindBuffer(gl.ARRAY_BUFFER, gr.InstancedBuf.BufID)
gl.BufferSubData(gl.ARRAY_BUFFER, 0, int(gr.GlyphCount*floatsPerGlyph)*4, gl.Ptr(&gr.GlyphVBO[:gr.GlyphCount*floatsPerGlyph][0]))
gr.GlyphMat.Bind()
//We need to disable depth testing so that nearby characters don't occlude each other
gl.Disable(gl.DEPTH_TEST)
gl.DrawElementsInstanced(gl.TRIANGLES, gr.GlyphMesh.Buf.IndexBufCount, gl.UNSIGNED_INT, gl.PtrOffset(0), int32(gr.GlyphCount))
gr.GlyphCount = 0
gl.Enable(gl.DEPTH_TEST)
}
//SetFace updates the underlying font atlas used by the glyph renderer.
//The current atlas is unchanged if there is an error
func (gr *GlyphRend) SetFace(fontOptions *truetype.Options) error {
face := truetype.NewFace(gr.Atlas.Font, fontOptions)
newAtlas, err := NewFontAtlasFromFont(gr.Atlas.Font, face, uint(fontOptions.Size))
if err != nil {
return err
}
gr.Atlas = newAtlas
gr.updateFontAtlasTexture()
return nil
}
func (gr *GlyphRend) SetFontFromFile(fontFile string, fontOptions *truetype.Options) error {
atlas, err := NewFontAtlasFromFile(fontFile, fontOptions)
if err != nil {
return err
}
gr.Atlas = atlas
gr.updateFontAtlasTexture()
return nil
}
//updateFontAtlasTexture uploads the texture representing the font atlas to the GPU
//and updates the GlyphRend.AtlasTex field.
//
//Any old textures are deleted
func (gr *GlyphRend) updateFontAtlasTexture() error {
//Clean old texture and load new texture
if gr.AtlasTex != nil {
gl.DeleteTextures(1, &gr.AtlasTex.TexID)
gr.AtlasTex = nil
}
atlasTex, err := assets.LoadTextureInMemImg(gr.Atlas.Img, nil)
if err != nil {
return err
}
gr.AtlasTex = &atlasTex
gl.BindTexture(gl.TEXTURE_2D, atlasTex.TexID)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
gl.BindTexture(gl.TEXTURE_2D, 0)
//Update material
gr.GlyphMat.DiffuseTex = gr.AtlasTex.TexID
// gr.GlyphMat.SetUnifFloat32("spaceAdv", gr.Atlas.SpaceAdvance)
// gr.GlyphMat.SetUnifFloat32("lineHeight", gr.Atlas.LineHeight)
return nil
}
func (gr *GlyphRend) SetScreenSize(screenWidth, screenHeight int32) {
gr.ScreenWidth = screenWidth
gr.ScreenHeight = screenHeight
//The projection matrix fits the screen size. This is needed so we can size and position characters correctly.
projMtx := gglm.Ortho(0, float32(screenWidth), float32(screenHeight), 0, 0.1, 20)
viewMtx := gglm.LookAt(gglm.NewVec3(0, 0, -10), gglm.NewVec3(0, 0, 0), gglm.NewVec3(0, 1, 0))
projViewMtx := projMtx.Mul(viewMtx)
gr.GlyphMat.SetUnifMat4("projViewMat", &projViewMtx.Mat4)
}
func NewGlyphRend(fontFile string, fontOptions *truetype.Options, screenWidth, screenHeight int32) (*GlyphRend, error) {
var err error
if RuneInfos == nil {
RuneInfos, err = ParseUnicodeData("./unicode-data-13.txt", "./arabic-shaping-13.txt")
if err != nil {
return nil, err
}
}
gr := &GlyphRend{
GlyphCount: 0,
GlyphVBO: make([]float32, floatsPerGlyph*DefaultGlyphsPerBatch),
TextRunsBuf: make([]TextRun, 0, 20),
SpacesPerTab: 4,
Opts: GlyphRendOpt_None,
OptValues: GlyphRendOptValues{
BgColor: gglm.NewVec4(0, 0, 0, 0),
},
}
//Create glyph mesh
gr.GlyphMesh = &meshes.Mesh{
Name: "glypQuad",
//VertPos only. Instanced attributes are stored separately
Buf: buffers.NewBuffer(
buffers.Element{ElementType: buffers.DataTypeVec3},
),
}
//The quad must be anchored at the bottom-left, not it's center (i.e. bottom-left vertex must be at 0,0)
gr.GlyphMesh.Buf.SetData([]float32{
0, 0, 0,
1, 0, 0,
0, 1, 0,
1, 1, 0,
})
gr.GlyphMesh.Buf.SetIndexBufData([]uint32{
0, 1, 2,
1, 3, 2,
})
//Setup material
gr.GlyphMat = materials.NewMaterial("glyphMat", "./res/shaders/glyph.glsl")
//With the material ready we can generate the atlas
gr.Atlas, err = NewFontAtlasFromFile(fontFile, fontOptions)
if err != nil {
return nil, err
}
err = gr.updateFontAtlasTexture()
if err != nil {
return nil, err
}
//Create instanced buf and set its instanced attributes.
//Multiple VBOs under one VAO, one VBO for vertex data, and one VBO for instanced data.
gr.InstancedBuf = buffers.Buffer{
VAOID: gr.GlyphMesh.Buf.VAOID,
}
gl.GenBuffers(1, &gr.InstancedBuf.BufID)
if gr.InstancedBuf.BufID == 0 {
return nil, errors.New("failed to create OpenGL VBO buffer")
}
gr.InstancedBuf.SetLayout(
buffers.Element{ElementType: buffers.DataTypeVec2}, //UV0
buffers.Element{ElementType: buffers.DataTypeVec2}, //UVSize
buffers.Element{ElementType: buffers.DataTypeVec4}, //Color
buffers.Element{ElementType: buffers.DataTypeVec3}, //ModelPos
buffers.Element{ElementType: buffers.DataTypeVec2}, //ModelScale
)
gr.InstancedBuf.Bind()
gl.BindBuffer(gl.ARRAY_BUFFER, gr.InstancedBuf.BufID)
layout := gr.InstancedBuf.GetLayout()
//Instanced attributes
uvEle := layout[0]
gl.EnableVertexAttribArray(1)
gl.VertexAttribPointer(1, uvEle.ElementType.CompCount(), uvEle.ElementType.GLType(), false, gr.InstancedBuf.Stride, gl.PtrOffset(uvEle.Offset))
gl.VertexAttribDivisor(1, 1)
uvSize := layout[1]
gl.EnableVertexAttribArray(2)
gl.VertexAttribPointer(2, uvSize.ElementType.CompCount(), uvSize.ElementType.GLType(), false, gr.InstancedBuf.Stride, gl.PtrOffset(uvSize.Offset))
gl.VertexAttribDivisor(2, 1)
colorEle := layout[2]
gl.EnableVertexAttribArray(3)
gl.VertexAttribPointer(3, colorEle.ElementType.CompCount(), colorEle.ElementType.GLType(), false, gr.InstancedBuf.Stride, gl.PtrOffset(colorEle.Offset))
gl.VertexAttribDivisor(3, 1)
posEle := layout[3]
gl.EnableVertexAttribArray(4)
gl.VertexAttribPointer(4, posEle.ElementType.CompCount(), posEle.ElementType.GLType(), false, gr.InstancedBuf.Stride, gl.PtrOffset(posEle.Offset))
gl.VertexAttribDivisor(4, 1)
scaleEle := layout[4]
gl.EnableVertexAttribArray(5)
gl.VertexAttribPointer(5, scaleEle.ElementType.CompCount(), scaleEle.ElementType.GLType(), false, gr.InstancedBuf.Stride, gl.PtrOffset(scaleEle.Offset))
gl.VertexAttribDivisor(5, 1)
//Fill buffer with zeros and set to dynamic so in the actual draw calls we use bufferSubData which makes things a lot faster
gl.BufferData(gl.ARRAY_BUFFER, len(gr.GlyphVBO)*4, gl.Ptr(&gr.GlyphVBO[0]), buffers.BufUsage_Dynamic.ToGL())
gl.BindBuffer(gl.ARRAY_BUFFER, 0)
gr.InstancedBuf.UnBind()
//Reset mesh layout because the instancedBuf setLayout over-wrote vertex attribute 0
gr.GlyphMesh.Buf.SetLayout(buffers.Element{ElementType: buffers.DataTypeVec3})
gr.SetScreenSize(screenWidth, screenHeight)
return gr, nil
}