69 Commits

Author SHA1 Message Date
6adefa81f7 Add Clamp 2024-05-14 06:06:00 +04:00
b9faa2e59e New NewTrMatXYZ 2024-05-05 00:27:05 +04:00
3eb372dec3 Remove more pointers+better NewXYZ funcs 2024-05-05 00:24:44 +04:00
e6bf7aee10 Remove pointers from .Col() 2024-05-04 23:30:40 +04:00
fa25c1f551 Update workflow name 2024-05-04 22:59:30 +04:00
9efe1a98b1 Update readme 2024-05-04 22:54:40 +04:00
81c90ca4e9 Fix workflow 2024-05-04 22:51:38 +04:00
90d3e8e870 Fix workflow 2024-05-04 22:49:58 +04:00
5d2cfa0329 NewXYZ funcs for Quat+github workflows 2024-05-04 22:44:48 +04:00
afb3bbfe75 Get rid of pointer returns when creating new objects 2024-05-04 22:21:41 +04:00
95005baf22 Mat4.InvertAndTranspose()+ ToMat3 and ToMat2 functions 2024-05-04 21:37:24 +04:00
c08e9d8610 NewXYZ funcs for ease of use and new ScaleXYZ funcs for vectors 2024-05-04 21:10:57 +04:00
cc5e7dcbce Mat4 inverse and determinant 2024-05-04 20:45:40 +04:00
ca55a67100 Mat2 and Mat3 determinant and inverse matrices 2024-05-04 04:49:27 +04:00
41307a8c5b Matrix transpose 2024-05-01 02:25:52 +04:00
da81ee79d9 Formatting 2024-05-01 01:25:10 +04:00
4eb59e3386 Implement RotByQuat and AngleVec3 and their tests 2022-12-06 04:26:10 +04:00
ed6806f23b Update readme 2022-10-01 00:15:51 +04:00
69f724922d right/left handed LookAt functions 2022-10-01 00:12:13 +04:00
051f91288d remove comment 2022-07-02 20:59:59 +04:00
d0ac00b388 Set swizzles and tests 2022-05-23 22:26:52 +04:00
971afed401 Reorder interface 2022-05-23 22:12:29 +04:00
547d3ad234 Inlining checks+update readme 2022-05-22 20:24:07 +04:00
e45e4d3304 Add NewQuatEulerXYZ+better comments 2022-05-22 20:14:01 +04:00
f3db256007 Greatly shorten vec_test 2022-05-22 20:06:06 +04:00
d7f5cbb136 Improve vec tests 2022-05-22 19:43:12 +04:00
2648dc910c 'Add' functions to swizzle interfaces+vec tests 2022-05-22 19:41:43 +04:00
386fa0b641 Ignore emacs files 2022-02-08 18:04:47 +04:00
7d8dce922f Readme update 2022-02-08 17:00:04 +04:00
f4f06c54b3 Make TrMat funcs chainable+more 32 scalar funcs 2022-01-13 17:51:04 +04:00
80d1c12e2d Update readme 2022-01-13 16:30:17 +04:00
8bb31393b4 Quat axis and angle tests 2022-01-13 16:22:38 +04:00
e4edb7dcec Angle and axis methods for quat 2022-01-13 16:06:13 +04:00
d832e19dab Rotate and Col functions 2022-01-13 15:49:30 +04:00
b39e8e0b80 Actually correct ortho 2021-11-15 09:53:43 +04:00
585d17aa29 Fix ortho func 2021-11-13 23:27:21 +04:00
d4c7755ca8 More benchmarks 2021-11-09 10:28:23 +04:00
2071b351d5 Move benchmarks into relevant test files 2021-11-09 10:19:42 +04:00
300c699e65 Add Ortho func 2021-11-09 10:13:58 +04:00
175d05420c Add perspective func+fix LookAt 2021-11-09 09:55:24 +04:00
d1a4f5ba7c Optimize mat3 mul 2021-11-09 09:36:59 +04:00
9282567928 Optimize mat4 mul 2021-11-09 09:29:45 +04:00
4c30b8b6d3 Use multi-dimensional arrays+ensure storage&comp. is column major 2021-11-09 09:13:16 +04:00
92a3ca3a9c LookAt func 2021-11-07 04:47:53 +04:00
8889482bd5 Quat angle and tests 2021-11-06 09:42:28 +04:00
2de2e9696a Finish main transform funcs+Clone funcs+return func receivers 2021-11-06 08:59:17 +04:00
81c22bfe4d Start quaternions and transform matrix 2021-11-06 07:44:08 +04:00
9d9bcdfc05 Vec reflect+geometric_test 2021-11-05 23:15:24 +04:00
710cca385f Update README.md 2021-11-05 18:04:28 +04:00
390222a18d Benchmark MulMat4Vec4 2021-11-05 07:51:04 +04:00
2bdd7b2d02 Mat4 tests 2021-11-05 07:39:55 +04:00
61b2298cb1 Mat2+Mat3 tests 2021-11-05 07:31:41 +04:00
62a2e4d7aa Mat2 tests 2021-11-05 07:22:57 +04:00
5980c50ced Mat*Vec mul 2021-11-05 07:07:01 +04:00
5f43d7da88 Vec normalize funcs 2021-11-05 06:43:17 +04:00
4a7e66c0b9 Ensure Dist/SqrDist funcs inline + DistVec4 + SqrDistVec4 2021-11-05 06:08:07 +04:00
0bf7a06315 X/Y/Z/W setters/getters 2021-11-05 05:54:30 +04:00
ad5d2c49c8 Rename At->Get 2021-11-05 05:47:41 +04:00
b2e9c48114 Vec distance functions 2021-11-05 05:46:11 +04:00
a3843e2e9c Dot4 2021-11-05 05:33:50 +04:00
2799b8df2e Vec4 and Swizzle4 2021-11-05 05:32:34 +04:00
ee27cfaa91 Equality for vectors 2021-11-05 05:29:50 +04:00
a629eab2ca Mat equality+small optimization 2021-11-05 05:28:33 +04:00
a28976286e Optimize mat4Mul 2021-11-05 05:22:32 +04:00
a30003efd4 Benchmarks 2021-11-05 05:07:32 +04:00
1a0374fc2b Mat4 Mul 2021-11-05 04:57:52 +04:00
d20d09f680 MulMat3 2021-11-05 04:44:00 +04:00
1d03d4c3ea Mat3 mul 2021-11-05 04:41:57 +04:00
2b0373ea1b Mat2 mul 2021-11-05 04:26:49 +04:00
28 changed files with 4420 additions and 326 deletions

21
.github/workflows/test-gglm.yml vendored Executable file
View File

@ -0,0 +1,21 @@
name: "Build and Tests"
on:
create:
workflow_dispatch:
jobs:
test-gglm-windows:
runs-on: [windows-latest]
steps:
- name: Install golang
uses: actions/setup-go@v3
with:
go-version: ">=1.17"
- name: Clone gglm
run: git clone https://github.com/bloeys/gglm
- name: Test gglm
working-directory: gglm
run: go test ./... -v

4
.gitignore vendored
View File

@ -12,4 +12,6 @@
*.out
# Dependency directories (remove the comment below to include it)
# vendor/
vendor/
.vscode
*~

View File

@ -1,2 +1,60 @@
# gglm
An OpenGL focused Go mathematics inspired by the C++ glm (OpenGL Mathematics) library
[![Tests](https://github.com/bloeys/gglm/actions/workflows/test-gglm.yml/badge.svg)](https://github.com/bloeys/gglm/actions/workflows/test-gglm.yml)
Fast OpenGL/Graphics focused Mathematics library in Go inspired by the c++ library [glm](https://github.com/g-truc/glm).
gglm currently has the following:
- Matrices are stored column major
- `Vec2`, `Vec3` and `Vec4` structs that implement vector (x,y,z,w) operations
- `Mat2`, `Mat3`, `Mat4` structs that implement square matrix operations
- `Quat` struct that implements quaternion operations
- `TrMat` struct that implements 3D transformation matrix operations
- Many useful geometric functions (e.g. dot product, cross product, vector reflection etc)
- 32-bit scalar operations (e.g. sin32, cos32, equality using epsilon, sqrt32 etc)
- Useful 32-bit constants (e.g. pi, Deg2Rad, Rad2Deg, float32 epsilon etc)
- Simple 'swizzle' interfaces that allow you to do things like `.X()` or `.R()` etc.
- Very easy to use with graphics/native APIs as everything is implemented using arrays
- `.String()` functions on all types for pretty printing
## Installation
Note: gglm requires Go 1.18 or higher.
`go get github.com/bloeys/gglm`
## Usage
```go
import "github.com/bloeys/gglm/gglm"
func main() {
// Vec2
v1 := &gglm.Vec2{Data: [2]float32{1, 2}}
v2 := &gglm.Vec2{Data: [2]float32{3, 4}}
println(gglm.DistVec2(v1, v2))
println(gglm.SqrDistVec2(v2, v1))
println(v1.Eq(v2))
v2.Set(1, 2)
println(v1.Eq(v2))
// This performs: v1 += v2
// v1 is returned from the function, so we can chain calls that operate on v1
newX := v1.Add(v2).X()
println("newX:", newX)
// LookAt for a right-handed coordinate system
camPos := gglm.NewVec3(0, 0, 3)
worldUp := gglm.NewVec3(0, 1, 0)
targetPos := gglm.NewVec3(0, 0, 0)
viewMat := gglm.LookAtRH(camPos, targetPos, worldUp)
println(viewMat.String())
}
```
## Notes
You can check compiler inlining decisions using `go run -gcflags "-m" .`. Some functions look a bit weird
because we are trying to reduce function complexity so the compiler inlines.

11
gglm/constants.go Executable file
View File

@ -0,0 +1,11 @@
package gglm
const (
Pi float32 = 3.14159265359
Deg2Rad float32 = Pi / 180
Rad2Deg float32 = 180 / Pi
F32Epsilon float32 = 1e-6
// CosHalf is Cos32(0.5)
CosHalf float32 = 0.87758256189
)

View File

@ -1,5 +1,7 @@
package gglm
import "math"
func DotVec2(v1, v2 *Vec2) float32 {
return v1.X()*v2.X() + v1.Y()*v2.Y()
}
@ -8,8 +10,16 @@ func DotVec3(v1, v2 *Vec3) float32 {
return v1.X()*v2.X() + v1.Y()*v2.Y() + v1.Z()*v2.Z()
}
func Cross(v1, v2 *Vec3) *Vec3 {
return &Vec3{
func DotVec4(v1, v2 *Vec4) float32 {
return v1.X()*v2.X() + v1.Y()*v2.Y() + v1.Z()*v2.Z() + v1.W()*v2.W()
}
func DotQuat(q1, q2 *Quat) float32 {
return q1.X()*q2.X() + q1.Y()*q2.Y() + q1.Z()*q2.Z() + q1.W()*q2.W()
}
func Cross(v1, v2 *Vec3) Vec3 {
return Vec3{
Data: [3]float32{
v1.Data[1]*v2.Data[2] - v1.Data[2]*v2.Data[1],
v1.Data[2]*v2.Data[0] - v1.Data[0]*v2.Data[2],
@ -17,3 +27,96 @@ func Cross(v1, v2 *Vec3) *Vec3 {
},
}
}
// DistVec2 returns euclidean distance between v1 and v2
func DistVec2(v1, v2 *Vec2) float32 {
x := v1.X() - v2.X()
y := v1.Y() - v2.Y()
return float32(math.Sqrt(float64(x*x + y*y)))
}
// DistVec3 returns euclidean distance between v1 and v2
func DistVec3(v1, v2 *Vec3) float32 {
x := v1.X() - v2.X()
y := v1.Y() - v2.Y()
z := v1.Z() - v2.Z()
return float32(math.Sqrt(float64(x*x + y*y + z*z)))
}
// DistVec4 returns euclidean distance between v1 and v2
func DistVec4(v1, v2 *Vec4) float32 {
//Using X() etc won't let the function inline
x := v1.Data[0] - v2.Data[0]
y := v1.Data[1] - v2.Data[1]
z := v1.Data[2] - v2.Data[2]
w := v1.Data[3] - v2.Data[3]
return float32(math.Sqrt(float64(x*x + y*y + z*z + w*w)))
}
// DistVec2 returns the squared euclidean distance between v1 and v2 (avoids a sqrt)
func SqrDistVec2(v1, v2 *Vec2) float32 {
x := v1.X() - v2.X()
y := v1.Y() - v2.Y()
return x*x + y*y
}
// DistVec3 returns the squared euclidean distance between v1 and v2 (avoids a sqrt)
func SqrDistVec3(v1, v2 *Vec3) float32 {
x := v1.X() - v2.X()
y := v1.Y() - v2.Y()
z := v1.Z() - v2.Z()
return x*x + y*y + z*z
}
// DistVec4 returns the squared euclidean distance between v1 and v2 (avoids a sqrt)
func SqrDistVec4(v1, v2 *Vec4) float32 {
x := v1.Data[0] - v2.Data[0]
y := v1.Data[1] - v2.Data[1]
z := v1.Data[2] - v2.Data[2]
w := v1.Data[3] - v2.Data[3]
return x*x + y*y + z*z + w*w
}
// ReflectVec2 returns the reflected vector of the incoming vector 'v', and the surface normal 'n'.
//
// Note: n must be normalized or you will get wrong results
func ReflectVec2(v, n *Vec2) Vec2 {
//reflectedVec = v 2*dot(v, norm)*norm
d := 2 * (v.Data[0]*n.Data[0] + v.Data[1]*n.Data[1])
return Vec2{
Data: [2]float32{
v.Data[0] - d*n.Data[0],
v.Data[1] - d*n.Data[1],
},
}
}
// ReflectVec3 returns the reflected vector of the incoming vector 'v', and the surface normal 'n'.
//
// Note: n must be normalized or you will get wrong results
func ReflectVec3(v, n *Vec3) Vec3 {
//reflectedVec = v 2*dot(v, norm)*norm
d := 2 * (v.Data[0]*n.Data[0] + v.Data[1]*n.Data[1] + v.Data[2]*n.Data[2])
return Vec3{
Data: [3]float32{
v.Data[0] - d*n.Data[0],
v.Data[1] - d*n.Data[1],
v.Data[2] - d*n.Data[2],
},
}
}
// AngleVec3 returns the angle between the two vectors in radians
func AngleVec3(v1, v2 *Vec3) float32 {
return Acos32(DotVec3(v1, v2) / (v1.Mag() * v2.Mag()))
}
// AngleQuat returns the angle between the two quaternions in radians
func AngleQuat(q1, q2 *Quat) float32 {
return Acos32(DotQuat(q1, q2))
}

216
gglm/geometric_test.go Executable file
View File

@ -0,0 +1,216 @@
package gglm_test
import (
"testing"
"github.com/bloeys/gglm/gglm"
)
var (
dotVec2Result, distVec2Result float32
dotVec3Result, distVec3Result float32
reflectVec2Result gglm.Vec2
crossResult, reflectVec3Result gglm.Vec3
)
func TestDotVec2(t *testing.T) {
v1 := gglm.Vec2{Data: [2]float32{1, 2}}
v2 := gglm.Vec2{Data: [2]float32{3, 4}}
ans := float32(11)
res := gglm.DotVec2(&v1, &v2)
if res != ans {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func TestDotVec3(t *testing.T) {
v1 := gglm.Vec3{Data: [3]float32{1, 2, 3}}
v2 := gglm.Vec3{Data: [3]float32{4, 5, 6}}
ans := float32(32)
res := gglm.DotVec3(&v1, &v2)
if res != ans {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func TestDotVec4(t *testing.T) {
v1 := gglm.Vec4{Data: [4]float32{1, 2, 3, 4}}
v2 := gglm.Vec4{Data: [4]float32{5, 6, 7, 8}}
ans := float32(70)
res := gglm.DotVec4(&v1, &v2)
if res != ans {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func TestDistVec2(t *testing.T) {
v1 := gglm.Vec2{Data: [2]float32{1, 2}}
v2 := gglm.Vec2{Data: [2]float32{3, 4}}
ans := float32(2.828427)
res := gglm.DistVec2(&v1, &v2)
if res != ans {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func TestDistVec3(t *testing.T) {
v1 := gglm.Vec3{Data: [3]float32{1, 2, 3}}
v2 := gglm.Vec3{Data: [3]float32{4, 5, 6}}
ans := float32(5.196152)
res := gglm.DistVec3(&v1, &v2)
if res != ans {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func TestDistVec4(t *testing.T) {
v1 := gglm.Vec4{Data: [4]float32{1, 2, 3, 4}}
v2 := gglm.Vec4{Data: [4]float32{5, 6, 7, 8}}
ans := float32(8)
res := gglm.DistVec4(&v1, &v2)
if res != ans {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func TestSqrDistVec2(t *testing.T) {
v1 := gglm.Vec2{Data: [2]float32{1, 2}}
v2 := gglm.Vec2{Data: [2]float32{3, 4}}
ans := float32(8)
res := gglm.SqrDistVec2(&v1, &v2)
if res != ans {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func TestSqrDistVec3(t *testing.T) {
v1 := gglm.Vec3{Data: [3]float32{1, 2, 3}}
v2 := gglm.Vec3{Data: [3]float32{4, 5, 6}}
ans := float32(27)
res := gglm.SqrDistVec3(&v1, &v2)
if res != ans {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func TestSqrDistVec4(t *testing.T) {
v1 := gglm.Vec4{Data: [4]float32{1, 2, 3, 4}}
v2 := gglm.Vec4{Data: [4]float32{5, 6, 7, 8}}
ans := float32(64)
res := gglm.SqrDistVec4(&v1, &v2)
if res != ans {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func TestReflectVec2(t *testing.T) {
v1 := gglm.Vec2{Data: [2]float32{1, 2}}
n := gglm.Vec2{Data: [2]float32{0, 1}}
ans := gglm.Vec2{Data: [2]float32{1, -2}}
res := gglm.ReflectVec2(&v1, &n)
if !res.Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func TestReflectVec3(t *testing.T) {
v1 := gglm.Vec3{Data: [3]float32{1, 2, 3}}
n := gglm.Vec3{Data: [3]float32{0, 1, 0}}
ans := gglm.Vec3{Data: [3]float32{1, -2, 3}}
res := gglm.ReflectVec3(&v1, &n)
if !res.Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", res, ans)
}
}
func BenchmarkDotVec2(b *testing.B) {
v1 := &gglm.Vec2{}
v2 := &gglm.Vec2{}
for i := 0; i < b.N; i++ {
dotVec2Result = gglm.DotVec2(v1, v2)
}
}
func BenchmarkDotVec3(b *testing.B) {
v1 := &gglm.Vec3{}
v2 := &gglm.Vec3{}
for i := 0; i < b.N; i++ {
dotVec3Result = gglm.DotVec3(v1, v2)
}
}
func BenchmarkCross(b *testing.B) {
v1 := &gglm.Vec3{}
v2 := &gglm.Vec3{}
for i := 0; i < b.N; i++ {
crossResult = gglm.Cross(v1, v2)
}
}
func BenchmarkDistVec2(b *testing.B) {
v1 := &gglm.Vec2{}
v2 := &gglm.Vec2{}
for i := 0; i < b.N; i++ {
distVec2Result = gglm.DistVec2(v1, v2)
}
}
func BenchmarkDistVec3(b *testing.B) {
v1 := &gglm.Vec3{}
v2 := &gglm.Vec3{}
for i := 0; i < b.N; i++ {
distVec3Result = gglm.DistVec3(v1, v2)
}
}
func BenchmarkReflectVec2(b *testing.B) {
v1 := &gglm.Vec2{}
v2 := &gglm.Vec2{}
for i := 0; i < b.N; i++ {
reflectVec2Result = gglm.ReflectVec2(v1, v2)
}
}
func BenchmarkReflectVec3(b *testing.B) {
v1 := &gglm.Vec3{}
v2 := &gglm.Vec3{}
for i := 0; i < b.N; i++ {
reflectVec3Result = gglm.ReflectVec3(v1, v2)
}
}

View File

@ -13,7 +13,7 @@ const (
MatSize4x4
)
//String panics if the MatSize is not known
// String panics if the MatSize is not known
func (ms MatSize) String() string {
switch ms {
@ -29,7 +29,7 @@ func (ms MatSize) String() string {
}
type Mat interface {
At(row, col int) float32
Get(row, col int) float32
Set(row, col int, val float32)
Size() MatSize
}

View File

@ -8,15 +8,15 @@ var _ Mat = &Mat2{}
var _ fmt.Stringer = &Mat2{}
type Mat2 struct {
Data [4]float32
Data [2][2]float32
}
func (m *Mat2) At(row, col int) float32 {
return m.Data[row*2+col]
func (m *Mat2) Get(row, col int) float32 {
return m.Data[col][row]
}
func (m *Mat2) Set(row, col int, val float32) {
m.Data[row*2+col] = val
m.Data[col][row] = val
}
func (m *Mat2) Size() MatSize {
@ -24,64 +24,195 @@ func (m *Mat2) Size() MatSize {
}
func (m *Mat2) String() string {
//+ always shows +/- sign; - means pad to the right; 9 means total of 9 digits (or padding if less); .3 means 3 decimals
return fmt.Sprintf("\n| %+-9.3f %+-9.3f |\n| %+-9.3f %+-9.3f |\n", m.Data[0], m.Data[1], m.Data[2], m.Data[3])
// + always shows +/- sign; - means pad to the right; 9 means total of 9 digits (or padding if less); .3 means 3 decimals
return fmt.Sprintf("\n| %+-9.3f %+-9.3f |\n| %+-9.3f %+-9.3f |\n", m.Data[0][0], m.Data[0][1], m.Data[1][0], m.Data[1][1])
}
//Add m += m2
func (m *Mat2) Add(m2 *Mat2) {
m.Data[0] += m2.Data[0]
m.Data[1] += m2.Data[1]
m.Data[2] += m2.Data[2]
m.Data[3] += m2.Data[3]
func (m *Mat2) Col(c int) Vec2 {
return Vec2{Data: m.Data[c]}
}
//Add m -= m2
func (m *Mat2) Sub(m2 *Mat2) {
m.Data[0] -= m2.Data[0]
m.Data[1] -= m2.Data[1]
m.Data[2] -= m2.Data[2]
m.Data[3] -= m2.Data[3]
// Add m += m2
func (m *Mat2) Add(m2 *Mat2) *Mat2 {
m.Data[0][0] += m2.Data[0][0]
m.Data[0][1] += m2.Data[0][1]
m.Data[1][0] += m2.Data[1][0]
m.Data[1][1] += m2.Data[1][1]
return m
}
//Scale m *= x (element wise multiplication)
func (m *Mat2) Scale(x float32) {
m.Data[0] *= x
m.Data[1] *= x
m.Data[2] *= x
m.Data[3] *= x
// Add m -= m2
func (m *Mat2) Sub(m2 *Mat2) *Mat2 {
m.Data[0][0] -= m2.Data[0][0]
m.Data[0][1] -= m2.Data[0][1]
m.Data[1][0] -= m2.Data[1][0]
m.Data[1][1] -= m2.Data[1][1]
return m
}
//AddMat2 m3 = m1 + m2
func AddMat2(m1, m2 *Mat2) *Mat2 {
return &Mat2{
Data: [4]float32{
m1.Data[0] + m2.Data[0],
m1.Data[1] + m2.Data[1],
m1.Data[2] + m2.Data[2],
m1.Data[3] + m2.Data[3],
// Mul m *= m2
func (m1 *Mat2) Mul(m2 *Mat2) *Mat2 {
m1.Data = [2][2]float32{
{
m1.Data[0][0]*m2.Data[0][0] + m1.Data[1][0]*m2.Data[0][1],
m1.Data[0][1]*m2.Data[0][0] + m1.Data[1][1]*m2.Data[0][1],
},
{
m1.Data[0][0]*m2.Data[1][0] + m1.Data[1][0]*m2.Data[1][1],
m1.Data[0][1]*m2.Data[1][0] + m1.Data[1][1]*m2.Data[1][1],
},
}
return m1
}
// Scale m *= x (element wise multiplication)
func (m *Mat2) Scale(x float32) *Mat2 {
m.Data[0][0] *= x
m.Data[0][1] *= x
m.Data[1][0] *= x
m.Data[1][1] *= x
return m
}
func (m *Mat2) Clone() *Mat2 {
return &Mat2{Data: m.Data}
}
func (m *Mat2) Eq(m2 *Mat2) bool {
return m.Data == m2.Data
}
func (m *Mat2) Transpose() *Mat2 {
m.Data = [2][2]float32{
{m.Data[0][0], m.Data[1][0]},
{m.Data[0][1], m.Data[1][1]},
}
return m
}
func (m *Mat2) Determinant() float32 {
return (m.Data[0][0] * m.Data[1][1]) - (m.Data[0][1] * m.Data[1][0])
}
// Invert inverts this matrix.
//
// Note that the inverse is not defined if the determinant is zero or extremely small.
// In the case the determinant is zero the matrix will (usually) get filled with infinities
func (m *Mat2) Invert() *Mat2 {
// https://www.cuemath.com/algebra/inverse-of-2x2-matrix/
inverseDet := 1 / m.Determinant()
m.Data = [2][2]float32{
{m.Data[1][1] * inverseDet, -m.Data[0][1] * inverseDet}, // Col0
{-m.Data[1][0] * inverseDet, m.Data[0][0] * inverseDet}, // Col1
}
return m
}
// AddMat2 m3 = m1 + m2
func AddMat2(m1, m2 *Mat2) Mat2 {
return Mat2{
Data: [2][2]float32{
{
m1.Data[0][0] + m2.Data[0][0],
m1.Data[0][1] + m2.Data[0][1],
},
{
m1.Data[1][0] + m2.Data[1][0],
m1.Data[1][1] + m2.Data[1][1],
},
},
}
}
//SubMat2 m3 = m1 - m2
func SubMat2(m1, m2 *Mat2) *Mat2 {
return &Mat2{
Data: [4]float32{
m1.Data[0] - m2.Data[0],
m1.Data[1] - m2.Data[1],
m1.Data[2] - m2.Data[2],
m1.Data[3] - m2.Data[3],
// SubMat2 m3 = m1 - m2
func SubMat2(m1, m2 *Mat2) Mat2 {
return Mat2{
Data: [2][2]float32{
{
m1.Data[0][0] - m2.Data[0][0],
m1.Data[0][1] - m2.Data[0][1],
},
{
m1.Data[1][0] - m2.Data[1][0],
m1.Data[1][1] - m2.Data[1][1],
},
},
}
}
//NewMat2Id returns the 2x2 identity matrix
func NewMat2Id() *Mat2 {
return &Mat2{
Data: [4]float32{
1, 0,
0, 1,
// MulMat2 m3 = m1 * m2
func MulMat2(m1, m2 *Mat2) Mat2 {
return Mat2{
Data: [2][2]float32{
{
m1.Data[0][0]*m2.Data[0][0] + m1.Data[1][0]*m2.Data[0][1],
m1.Data[0][1]*m2.Data[0][0] + m1.Data[1][1]*m2.Data[0][1],
},
{
m1.Data[0][0]*m2.Data[1][0] + m1.Data[1][0]*m2.Data[1][1],
m1.Data[0][1]*m2.Data[1][0] + m1.Data[1][1]*m2.Data[1][1],
},
},
}
}
// MulMat2Vec2 v2 = m1 * v1
func MulMat2Vec2(m1 *Mat2, v1 *Vec2) Vec2 {
return Vec2{
Data: [2]float32{
m1.Data[0][0]*v1.Data[0] + m1.Data[1][0]*v1.Data[1],
m1.Data[0][1]*v1.Data[0] + m1.Data[1][1]*v1.Data[1],
},
}
}
// NewMat2Id returns the 2x2 identity matrix
func NewMat2Id() Mat2 {
return Mat2{
Data: [2][2]float32{
{1, 0},
{0, 1},
},
}
}
func NewMat2Diag(diagVal float32) Mat2 {
return Mat2{
Data: [2][2]float32{
{diagVal, 0},
{0, diagVal},
},
}
}
func NewMat2DiagArr(diag [2]float32) Mat2 {
return Mat2{
Data: [2][2]float32{
{diag[0], 0},
{0, diag[1]},
},
}
}
func NewMat2Vec2(col0, col1 *Vec2) Mat2 {
return Mat2{
Data: [2][2]float32{
col0.Data,
col1.Data,
},
}
}
func NewMat2Arr(col0, col1 [2]float32) Mat2 {
return Mat2{
Data: [2][2]float32{
col0,
col1,
},
}
}

230
gglm/mat2_test.go Executable file
View File

@ -0,0 +1,230 @@
package gglm_test
import (
"testing"
"github.com/bloeys/gglm/gglm"
)
func TestMat2GetSet(t *testing.T) {
m1 := gglm.Mat2{}
m1.Set(0, 1, -10)
m1.Set(1, 0, 55)
if m1.Get(0, 1) != -10 {
t.Errorf("Got: %v; Expected: %v", m1.Get(0, 1), -10)
}
if m1.Get(1, 0) != 55 {
t.Errorf("Got: %v; Expected: %v", m1.Get(1, 0), 55)
}
}
func TestMat2Id(t *testing.T) {
correctAns := gglm.Mat2{
Data: [2][2]float32{
{1, 0},
{0, 1},
}}
m1 := gglm.NewMat2Id()
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestSubMat2(t *testing.T) {
correctAns := gglm.Mat2{
Data: [2][2]float32{
{-4, -4},
{-4, -4},
}}
m1 := &gglm.Mat2{
Data: [2][2]float32{
{1, 3},
{2, 4},
}}
m2 := &gglm.Mat2{
Data: [2][2]float32{
{5, 7},
{6, 8},
}}
result := gglm.SubMat2(m1, m2)
m1.Sub(m2)
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestAddMat2(t *testing.T) {
correctAns := gglm.Mat2{
Data: [2][2]float32{
{6, 10},
{8, 12},
}}
m1 := &gglm.Mat2{
Data: [2][2]float32{
{1, 3},
{2, 4},
}}
m2 := &gglm.Mat2{
Data: [2][2]float32{
{5, 7},
{6, 8},
}}
result := gglm.AddMat2(m1, m2)
m1.Add(m2)
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestMulMat2(t *testing.T) {
correctAns := gglm.Mat2{
Data: [2][2]float32{
{19, 43},
{22, 50},
}}
m1 := &gglm.Mat2{
Data: [2][2]float32{
{1, 3},
{2, 4},
}}
m2 := &gglm.Mat2{
Data: [2][2]float32{
{5, 7},
{6, 8},
}}
result := gglm.MulMat2(m1, m2)
m1.Mul(m2)
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestMulMat2Vec2(t *testing.T) {
correctAns := gglm.Vec2{Data: [2]float32{5, 11}}
m := &gglm.Mat2{
Data: [2][2]float32{
{1, 3},
{2, 4},
}}
v := &gglm.Vec2{Data: [2]float32{1, 2}}
result := gglm.MulMat2Vec2(m, v)
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
}
func TestTransposeMat2(t *testing.T) {
m := gglm.NewMat2Id()
ans := gglm.NewMat2Id()
if !m.Transpose().Transpose().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
if !m.Transpose().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
m.Data = [2][2]float32{
{00, 01},
{10, 11},
}
ans.Data = [2][2]float32{
{00, 10},
{01, 11},
}
if !m.Transpose().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
}
func TestDeterminantMat2(t *testing.T) {
m := gglm.NewMat2Id()
ans := float32(1)
if m.Determinant() != ans {
t.Errorf("Got: %f; Expected: %f", m.Determinant(), ans)
}
m.Data = [2][2]float32{
{1, 8},
{5, 31},
}
ans = -9
if m.Determinant() != ans {
t.Errorf("Got: %f; Expected: %f", m.Determinant(), ans)
}
}
func TestInvertMat2(t *testing.T) {
m := gglm.NewMat2Id()
ans := gglm.NewMat2Id()
if !m.Invert().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
m.Data = [2][2]float32{
{1, 8},
{5, 31},
}
ans.Data = [2][2]float32{
{-31 / 9.0, 8 / 9.0},
{5 / 9.0, -1 / 9.0},
}
if !m.Invert().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
}
func BenchmarkMulMat2(b *testing.B) {
m1 := gglm.NewMat2Id()
m2 := gglm.NewMat2Id()
for i := 0; i < b.N; i++ {
m1.Mul(&m2)
}
}

View File

@ -8,15 +8,15 @@ var _ Mat = &Mat3{}
var _ fmt.Stringer = &Mat3{}
type Mat3 struct {
Data [9]float32
Data [3][3]float32
}
func (m *Mat3) At(row, col int) float32 {
return m.Data[row*3+col]
func (m *Mat3) Get(row, col int) float32 {
return m.Data[col][row]
}
func (m *Mat3) Set(row, col int, val float32) {
m.Data[row*3+col] = val
m.Data[col][row] = val
}
func (m *Mat3) Size() MatSize {
@ -25,105 +25,325 @@ func (m *Mat3) Size() MatSize {
func (m *Mat3) String() string {
return fmt.Sprintf("\n| %+-9.3f %+-9.3f %+-9.3f |\n| %+-9.3f %+-9.3f %+-9.3f |\n| %+-9.3f %+-9.3f %+-9.3f |\n",
m.Data[0], m.Data[1], m.Data[2],
m.Data[3], m.Data[4], m.Data[5],
m.Data[6], m.Data[7], m.Data[8],
m.Data[0][0], m.Data[0][1], m.Data[0][2],
m.Data[1][0], m.Data[1][1], m.Data[1][2],
m.Data[2][0], m.Data[2][1], m.Data[2][2],
)
}
//Add m += m2
func (m *Mat3) Add(m2 *Mat3) {
m.Data[0] += m2.Data[0]
m.Data[1] += m2.Data[1]
m.Data[2] += m2.Data[2]
m.Data[3] += m2.Data[3]
m.Data[4] += m2.Data[4]
m.Data[5] += m2.Data[5]
m.Data[6] += m2.Data[6]
m.Data[7] += m2.Data[7]
m.Data[8] += m2.Data[8]
func (m *Mat3) Col(c int) Vec3 {
return Vec3{Data: m.Data[c]}
}
//Add m -= m2
func (m *Mat3) Sub(m2 *Mat3) {
// Add m += m2
func (m *Mat3) Add(m2 *Mat3) *Mat3 {
m.Data[0] -= m2.Data[0]
m.Data[1] -= m2.Data[1]
m.Data[2] -= m2.Data[2]
m.Data[0][0] += m2.Data[0][0]
m.Data[0][1] += m2.Data[0][1]
m.Data[0][2] += m2.Data[0][2]
m.Data[3] -= m2.Data[3]
m.Data[4] -= m2.Data[4]
m.Data[5] -= m2.Data[5]
m.Data[1][0] += m2.Data[1][0]
m.Data[1][1] += m2.Data[1][1]
m.Data[1][2] += m2.Data[1][2]
m.Data[6] -= m2.Data[6]
m.Data[7] -= m2.Data[7]
m.Data[8] -= m2.Data[8]
m.Data[2][0] += m2.Data[2][0]
m.Data[2][1] += m2.Data[2][1]
m.Data[2][2] += m2.Data[2][2]
return m
}
//Scale m *= x (element wise multiplication)
func (m *Mat3) Scale(x float32) {
// Add m -= m2
func (m *Mat3) Sub(m2 *Mat3) *Mat3 {
m.Data[0] *= x
m.Data[1] *= x
m.Data[2] *= x
m.Data[0][0] -= m2.Data[0][0]
m.Data[0][1] -= m2.Data[0][1]
m.Data[0][2] -= m2.Data[0][2]
m.Data[3] *= x
m.Data[4] *= x
m.Data[5] *= x
m.Data[1][0] -= m2.Data[1][0]
m.Data[1][1] -= m2.Data[1][1]
m.Data[1][2] -= m2.Data[1][2]
m.Data[6] *= x
m.Data[7] *= x
m.Data[8] *= x
m.Data[2][0] -= m2.Data[2][0]
m.Data[2][1] -= m2.Data[2][1]
m.Data[2][2] -= m2.Data[2][2]
return m
}
//AddMat3 m3 = m1 + m2
func AddMat3(m1, m2 *Mat3) *Mat3 {
return &Mat3{
Data: [9]float32{
m1.Data[0] + m2.Data[0],
m1.Data[1] + m2.Data[1],
m1.Data[2] + m2.Data[2],
// Mul m *= m2
func (m *Mat3) Mul(m2 *Mat3) *Mat3 {
m1.Data[3] + m2.Data[3],
m1.Data[4] + m2.Data[4],
m1.Data[5] + m2.Data[5],
//Array indices:
// 00, 10, 20,
// 01, 11, 21,
// 02, 12, 22,
m1.Data[6] + m2.Data[6],
m1.Data[7] + m2.Data[7],
m1.Data[8] + m2.Data[8],
m00 := m.Data[0][0]
m01 := m.Data[0][1]
m02 := m.Data[0][2]
m10 := m.Data[1][0]
m11 := m.Data[1][1]
m12 := m.Data[1][2]
m20 := m.Data[2][0]
m21 := m.Data[2][1]
m22 := m.Data[2][2]
m.Data = [3][3]float32{
{
m00*m2.Data[0][0] + m10*m2.Data[0][1] + m20*m2.Data[0][2],
m01*m2.Data[0][0] + m11*m2.Data[0][1] + m21*m2.Data[0][2],
m02*m2.Data[0][0] + m12*m2.Data[0][1] + m22*m2.Data[0][2],
},
{
m00*m2.Data[1][0] + m10*m2.Data[1][1] + m20*m2.Data[1][2],
m01*m2.Data[1][0] + m11*m2.Data[1][1] + m21*m2.Data[1][2],
m02*m2.Data[1][0] + m12*m2.Data[1][1] + m22*m2.Data[1][2],
},
{
m00*m2.Data[2][0] + m10*m2.Data[2][1] + m20*m2.Data[2][2],
m01*m2.Data[2][0] + m11*m2.Data[2][1] + m21*m2.Data[2][2],
m02*m2.Data[2][0] + m12*m2.Data[2][1] + m22*m2.Data[2][2],
},
}
return m
}
// Scale m *= x (element wise multiplication)
func (m *Mat3) Scale(x float32) *Mat3 {
m.Data[0][0] *= x
m.Data[0][1] *= x
m.Data[0][2] *= x
m.Data[1][0] *= x
m.Data[1][1] *= x
m.Data[1][2] *= x
m.Data[2][0] *= x
m.Data[2][1] *= x
m.Data[2][2] *= x
return m
}
func (m *Mat3) Clone() *Mat3 {
return &Mat3{Data: m.Data}
}
func (m *Mat3) Eq(m2 *Mat3) bool {
return m.Data == m2.Data
}
func (m *Mat3) Transpose() *Mat3 {
m.Data = [3][3]float32{
{m.Data[0][0], m.Data[1][0], m.Data[2][0]},
{m.Data[0][1], m.Data[1][1], m.Data[2][1]},
{m.Data[0][2], m.Data[1][2], m.Data[2][2]},
}
return m
}
func (m *Mat3) Determinant() float32 {
x := m.Data[0][0] * (m.Data[1][1]*m.Data[2][2] - m.Data[2][1]*m.Data[1][2])
y := m.Data[1][0] * (m.Data[2][1]*m.Data[0][2] - m.Data[0][1]*m.Data[2][2])
z := m.Data[2][0] * (m.Data[0][1]*m.Data[1][2] - m.Data[1][1]*m.Data[0][2])
return x + y + z
}
// Invert inverts this matrix.
//
// Note that the inverse is not defined if the determinant is zero or extremely small.
// In the case the determinant is zero the matrix will (usually) get filled with infinities
func (m *Mat3) Invert() *Mat3 {
// https://www.cuemath.com/algebra/inverse-of-3x3-matrix/
// Manually inline the determinant function because go doesn't
x := m.Data[0][0] * (m.Data[1][1]*m.Data[2][2] - m.Data[2][1]*m.Data[1][2])
y := m.Data[1][0] * (m.Data[2][1]*m.Data[0][2] - m.Data[0][1]*m.Data[2][2])
z := m.Data[2][0] * (m.Data[0][1]*m.Data[1][2] - m.Data[1][1]*m.Data[0][2])
inverseDet := 1 / (x + y + z)
m.Data = [3][3]float32{
// Col0
{
(m.Data[1][1]*m.Data[2][2] - m.Data[2][1]*m.Data[1][2]) * inverseDet,
-(m.Data[0][1]*m.Data[2][2] - m.Data[2][1]*m.Data[0][2]) * inverseDet,
(m.Data[0][1]*m.Data[1][2] - m.Data[1][1]*m.Data[0][2]) * inverseDet,
},
// Col1
{
-(m.Data[1][0]*m.Data[2][2] - m.Data[2][0]*m.Data[1][2]) * inverseDet,
(m.Data[0][0]*m.Data[2][2] - m.Data[2][0]*m.Data[0][2]) * inverseDet,
-(m.Data[0][0]*m.Data[1][2] - m.Data[1][0]*m.Data[0][2]) * inverseDet,
},
// Col2
{
(m.Data[1][0]*m.Data[2][1] - m.Data[2][0]*m.Data[1][1]) * inverseDet,
-(m.Data[0][0]*m.Data[2][1] - m.Data[2][0]*m.Data[0][1]) * inverseDet,
(m.Data[0][0]*m.Data[1][1] - m.Data[1][0]*m.Data[0][1]) * inverseDet,
},
}
return m
}
// ToMat2 returns a Mat2 that contains the top-left 2x2 section of the Mat3.
// That is, column 2 and row 2 are dropped.
func (m *Mat3) ToMat2() Mat2 {
return Mat2{
Data: [2][2]float32{
{m.Data[0][0], m.Data[0][1]},
{m.Data[1][0], m.Data[1][1]},
},
}
}
//SubMat3 m3 = m1 - m2
func SubMat3(m1, m2 *Mat3) *Mat3 {
return &Mat3{
Data: [9]float32{
m1.Data[0] - m2.Data[0],
m1.Data[1] - m2.Data[1],
m1.Data[2] - m2.Data[2],
m1.Data[3] - m2.Data[3],
m1.Data[4] - m2.Data[4],
m1.Data[5] - m2.Data[5],
m1.Data[6] - m2.Data[6],
m1.Data[7] - m2.Data[7],
m1.Data[8] - m2.Data[8],
// AddMat3 m3 = m1 + m2
func AddMat3(m1, m2 *Mat3) Mat3 {
return Mat3{
Data: [3][3]float32{
{
m1.Data[0][0] + m2.Data[0][0],
m1.Data[0][1] + m2.Data[0][1],
m1.Data[0][2] + m2.Data[0][2],
},
{
m1.Data[1][0] + m2.Data[1][0],
m1.Data[1][1] + m2.Data[1][1],
m1.Data[1][2] + m2.Data[1][2],
},
{
m1.Data[2][0] + m2.Data[2][0],
m1.Data[2][1] + m2.Data[2][1],
m1.Data[2][2] + m2.Data[2][2],
},
},
}
}
//NewMat3Id returns the 3x3 identity matrix
func NewMat3Id() *Mat3 {
return &Mat3{
Data: [9]float32{
1, 0, 0,
0, 1, 0,
0, 0, 1,
// SubMat3 m3 = m1 - m2
func SubMat3(m1, m2 *Mat3) Mat3 {
return Mat3{
Data: [3][3]float32{
{
m1.Data[0][0] - m2.Data[0][0],
m1.Data[0][1] - m2.Data[0][1],
m1.Data[0][2] - m2.Data[0][2],
},
{
m1.Data[1][0] - m2.Data[1][0],
m1.Data[1][1] - m2.Data[1][1],
m1.Data[1][2] - m2.Data[1][2],
},
{
m1.Data[2][0] - m2.Data[2][0],
m1.Data[2][1] - m2.Data[2][1],
m1.Data[2][2] - m2.Data[2][2],
},
},
}
}
// MulMat3 m3 = m1 * m2
func MulMat3(m1, m2 *Mat3) Mat3 {
m00 := m1.Data[0][0]
m01 := m1.Data[0][1]
m02 := m1.Data[0][2]
m10 := m1.Data[1][0]
m11 := m1.Data[1][1]
m12 := m1.Data[1][2]
m20 := m1.Data[2][0]
m21 := m1.Data[2][1]
m22 := m1.Data[2][2]
return Mat3{
Data: [3][3]float32{
{
m00*m2.Data[0][0] + m10*m2.Data[0][1] + m20*m2.Data[0][2],
m01*m2.Data[0][0] + m11*m2.Data[0][1] + m21*m2.Data[0][2],
m02*m2.Data[0][0] + m12*m2.Data[0][1] + m22*m2.Data[0][2],
},
{
m00*m2.Data[1][0] + m10*m2.Data[1][1] + m20*m2.Data[1][2],
m01*m2.Data[1][0] + m11*m2.Data[1][1] + m21*m2.Data[1][2],
m02*m2.Data[1][0] + m12*m2.Data[1][1] + m22*m2.Data[1][2],
},
{
m00*m2.Data[2][0] + m10*m2.Data[2][1] + m20*m2.Data[2][2],
m01*m2.Data[2][0] + m11*m2.Data[2][1] + m21*m2.Data[2][2],
m02*m2.Data[2][0] + m12*m2.Data[2][1] + m22*m2.Data[2][2],
},
},
}
}
// MulMat3Vec3 v2 = m1 * v1
func MulMat3Vec3(m1 *Mat3, v1 *Vec3) Vec3 {
return Vec3{
Data: [3]float32{
m1.Data[0][0]*v1.Data[0] + m1.Data[1][0]*v1.Data[1] + m1.Data[2][0]*v1.Data[2],
m1.Data[0][1]*v1.Data[0] + m1.Data[1][1]*v1.Data[1] + m1.Data[2][1]*v1.Data[2],
m1.Data[0][2]*v1.Data[0] + m1.Data[1][2]*v1.Data[1] + m1.Data[2][2]*v1.Data[2],
},
}
}
// NewMat3Id returns the 3x3 identity matrix
func NewMat3Id() Mat3 {
return Mat3{
Data: [3][3]float32{
{1, 0, 0},
{0, 1, 0},
{0, 0, 1},
},
}
}
func NewMat3Diag(diagVal float32) Mat3 {
return Mat3{
Data: [3][3]float32{
{diagVal, 0, 0},
{0, diagVal, 0},
{0, 0, diagVal},
},
}
}
func NewMat3DiagArr(diag [3]float32) Mat3 {
return Mat3{
Data: [3][3]float32{
{diag[0], 0, 0},
{0, diag[1], 0},
{0, 0, diag[2]},
},
}
}
func NewMat3Vec3(col0, col1, col2 *Vec3) Mat3 {
return Mat3{
Data: [3][3]float32{
col0.Data,
col1.Data,
col2.Data,
},
}
}
func NewMat3Arr(col0, col1, col2 [3]float32) Mat3 {
return Mat3{
Data: [3][3]float32{
col0,
col1,
col2,
},
}
}

250
gglm/mat3_test.go Executable file
View File

@ -0,0 +1,250 @@
package gglm_test
import (
"testing"
"github.com/bloeys/gglm/gglm"
)
func TestMat3GetSet(t *testing.T) {
m1 := gglm.Mat3{}
m1.Set(0, 1, -10)
m1.Set(1, 0, 55)
m1.Set(2, 2, 99)
if m1.Get(0, 1) != -10 {
t.Errorf("Got: %v; Expected: %v", m1.Get(0, 1), -10)
}
if m1.Get(1, 0) != 55 {
t.Errorf("Got: %v; Expected: %v", m1.Get(1, 0), 55)
}
if m1.Get(2, 2) != 99 {
t.Errorf("Got: %v; Expected: %v", m1.Get(2, 2), 99)
}
}
func TestMat3Id(t *testing.T) {
correctAns := gglm.Mat3{
Data: [3][3]float32{
{1, 0, 0},
{0, 1, 0},
{0, 0, 1},
}}
m1 := gglm.NewMat3Id()
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestSubMat3(t *testing.T) {
correctAns := gglm.Mat3{
Data: [3][3]float32{
{-9, -9, -9},
{-9, -9, -9},
{-9, -9, -9},
}}
m1 := &gglm.Mat3{
Data: [3][3]float32{
{1, 4, 7},
{2, 5, 8},
{3, 6, 9},
}}
m2 := &gglm.Mat3{
Data: [3][3]float32{
{10, 13, 16},
{11, 14, 17},
{12, 15, 18},
}}
result := gglm.SubMat3(m1, m2)
m1.Sub(m2)
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestAddMat3(t *testing.T) {
correctAns := gglm.Mat3{
Data: [3][3]float32{
{11, 17, 23},
{13, 19, 25},
{15, 21, 27},
}}
m1 := &gglm.Mat3{
Data: [3][3]float32{
{1, 4, 7},
{2, 5, 8},
{3, 6, 9},
}}
m2 := &gglm.Mat3{
Data: [3][3]float32{
{10, 13, 16},
{11, 14, 17},
{12, 15, 18},
}}
result := gglm.AddMat3(m1, m2)
m1.Add(m2)
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestMulMat3(t *testing.T) {
correctAns := gglm.Mat3{
Data: [3][3]float32{
{84, 201, 318},
{90, 216, 342},
{96, 231, 366},
}}
m1 := &gglm.Mat3{
Data: [3][3]float32{
{1, 4, 7},
{2, 5, 8},
{3, 6, 9},
}}
m2 := &gglm.Mat3{
Data: [3][3]float32{
{10, 13, 16},
{11, 14, 17},
{12, 15, 18},
}}
result := gglm.MulMat3(m1, m2)
m1.Mul(m2)
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestMulMat3Vec3(t *testing.T) {
m := &gglm.Mat3{
Data: [3][3]float32{
{1, 4, 7},
{2, 5, 8},
{3, 6, 9},
}}
v := &gglm.Vec3{Data: [3]float32{1, 2, 3}}
result := gglm.MulMat3Vec3(m, v)
correctAns := gglm.Vec3{Data: [3]float32{14, 32, 50}}
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
}
func TestTransposeMat3(t *testing.T) {
m := gglm.NewMat3Id()
ans := gglm.NewMat3Id()
if !m.Transpose().Transpose().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
if !m.Transpose().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
m.Data = [3][3]float32{
{00, 01, 02},
{10, 11, 12},
{20, 21, 22},
}
ans.Data = [3][3]float32{
{00, 10, 20},
{01, 11, 21},
{02, 12, 22},
}
if !m.Transpose().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
}
func TestDeterminantMat3(t *testing.T) {
m := gglm.NewMat3Id()
ans := float32(1)
if m.Determinant() != ans {
t.Errorf("Got: %f; Expected: %f", m.Determinant(), ans)
}
m.Data = [3][3]float32{
{1, 8, 2},
{5, 3, 5},
{9, 6, 7},
}
ans = 77
if m.Determinant() != ans {
t.Errorf("Got: %f; Expected: %f", m.Determinant(), ans)
}
}
func TestInvertMat3(t *testing.T) {
m := gglm.NewMat3Id()
ans := gglm.NewMat3Id()
if !m.Invert().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
m.Data = [3][3]float32{
{1, 8, 2},
{5, 3, 5},
{9, 6, 7},
}
ans.Data = [3][3]float32{
{-9 / 77.0, -4 / 7.0, 34 / 77.0},
{10 / 77.0, -1 / 7.0, 5 / 77.0},
{3 / 77.0, 6 / 7.0, -37 / 77.0},
}
if !m.Invert().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
}
func BenchmarkMulMat3(b *testing.B) {
m1 := gglm.NewMat3Id()
m2 := gglm.NewMat3Id()
for i := 0; i < b.N; i++ {
m1.Mul(&m2)
}
}

View File

@ -8,15 +8,15 @@ var _ Mat = &Mat4{}
var _ fmt.Stringer = &Mat4{}
type Mat4 struct {
Data [16]float32
Data [4][4]float32
}
func (m *Mat4) At(row, col int) float32 {
return m.Data[row*4+col]
func (m *Mat4) Get(row, col int) float32 {
return m.Data[col][row]
}
func (m *Mat4) Set(row, col int, val float32) {
m.Data[row*4+col] = val
m.Data[col][row] = val
}
func (m *Mat4) Size() MatSize {
@ -25,147 +25,656 @@ func (m *Mat4) Size() MatSize {
func (m *Mat4) String() string {
return fmt.Sprintf("\n| %+-9.3f %+-9.3f %+-9.3f %+-9.3f |\n| %+-9.3f %+-9.3f %+-9.3f %+-9.3f |\n| %+-9.3f %+-9.3f %+-9.3f %+-9.3f |\n| %+-9.3f %+-9.3f %+-9.3f %+-9.3f |\n",
m.Data[0], m.Data[1], m.Data[2], m.Data[3],
m.Data[4], m.Data[5], m.Data[6], m.Data[7],
m.Data[8], m.Data[9], m.Data[10], m.Data[11],
m.Data[12], m.Data[13], m.Data[14], m.Data[15],
m.Data[0][0], m.Data[0][1], m.Data[0][2], m.Data[0][3],
m.Data[1][0], m.Data[1][1], m.Data[1][2], m.Data[1][3],
m.Data[2][0], m.Data[2][1], m.Data[2][2], m.Data[2][3],
m.Data[3][0], m.Data[3][1], m.Data[3][2], m.Data[3][3],
)
}
//Add m += m2
func (m *Mat4) Add(m2 *Mat4) {
m.Data[0] += m2.Data[0]
m.Data[1] += m2.Data[1]
m.Data[2] += m2.Data[2]
m.Data[3] += m2.Data[3]
m.Data[4] += m2.Data[4]
m.Data[5] += m2.Data[5]
m.Data[6] += m2.Data[6]
m.Data[7] += m2.Data[7]
m.Data[8] += m2.Data[8]
m.Data[9] += m2.Data[9]
m.Data[10] += m2.Data[10]
m.Data[11] += m2.Data[11]
m.Data[12] += m2.Data[12]
m.Data[13] += m2.Data[13]
m.Data[14] += m2.Data[14]
m.Data[15] += m2.Data[15]
func (m *Mat4) Col(c int) Vec4 {
return Vec4{Data: m.Data[c]}
}
//Add m -= m2
func (m *Mat4) Sub(m2 *Mat4) {
// Add m += m2
func (m *Mat4) Add(m2 *Mat4) *Mat4 {
m.Data[0] -= m2.Data[0]
m.Data[1] -= m2.Data[1]
m.Data[2] -= m2.Data[2]
m.Data[3] -= m2.Data[3]
m.Data[0][0] += m2.Data[0][0]
m.Data[0][1] += m2.Data[0][1]
m.Data[0][2] += m2.Data[0][2]
m.Data[0][3] += m2.Data[0][3]
m.Data[4] -= m2.Data[4]
m.Data[5] -= m2.Data[5]
m.Data[6] -= m2.Data[6]
m.Data[7] -= m2.Data[7]
m.Data[1][0] += m2.Data[1][0]
m.Data[1][1] += m2.Data[1][1]
m.Data[1][2] += m2.Data[1][2]
m.Data[1][3] += m2.Data[1][3]
m.Data[8] -= m2.Data[8]
m.Data[9] -= m2.Data[9]
m.Data[10] -= m2.Data[10]
m.Data[11] -= m2.Data[11]
m.Data[2][0] += m2.Data[2][0]
m.Data[2][1] += m2.Data[2][1]
m.Data[2][2] += m2.Data[2][2]
m.Data[2][3] += m2.Data[2][3]
m.Data[12] -= m2.Data[12]
m.Data[13] -= m2.Data[13]
m.Data[14] -= m2.Data[14]
m.Data[15] -= m2.Data[15]
m.Data[3][0] += m2.Data[3][0]
m.Data[3][1] += m2.Data[3][1]
m.Data[3][2] += m2.Data[3][2]
m.Data[3][3] += m2.Data[3][3]
return m
}
//Scale m *= x (element wise multiplication)
func (m *Mat4) Scale(x float32) {
// Add m -= m2
func (m *Mat4) Sub(m2 *Mat4) *Mat4 {
m.Data[0] *= x
m.Data[1] *= x
m.Data[2] *= x
m.Data[3] *= x
m.Data[0][0] -= m2.Data[0][0]
m.Data[0][1] -= m2.Data[0][1]
m.Data[0][2] -= m2.Data[0][2]
m.Data[0][3] -= m2.Data[0][3]
m.Data[4] *= x
m.Data[5] *= x
m.Data[6] *= x
m.Data[7] *= x
m.Data[1][0] -= m2.Data[1][0]
m.Data[1][1] -= m2.Data[1][1]
m.Data[1][2] -= m2.Data[1][2]
m.Data[1][3] -= m2.Data[1][3]
m.Data[8] *= x
m.Data[9] *= x
m.Data[10] *= x
m.Data[11] *= x
m.Data[2][0] -= m2.Data[2][0]
m.Data[2][1] -= m2.Data[2][1]
m.Data[2][2] -= m2.Data[2][2]
m.Data[2][3] -= m2.Data[2][3]
m.Data[12] *= x
m.Data[13] *= x
m.Data[14] *= x
m.Data[15] *= x
m.Data[3][0] -= m2.Data[3][0]
m.Data[3][1] -= m2.Data[3][1]
m.Data[3][2] -= m2.Data[3][2]
m.Data[3][3] -= m2.Data[3][3]
return m
}
//AddMat4 m3 = m1 + m2
func AddMat4(m1, m2 *Mat4) *Mat4 {
return &Mat4{
Data: [16]float32{
m1.Data[0] + m2.Data[0],
m1.Data[1] + m2.Data[1],
m1.Data[2] + m2.Data[2],
m1.Data[3] + m2.Data[3],
// Mul m *= m2
func (m *Mat4) Mul(m2 *Mat4) *Mat4 {
m1.Data[4] + m2.Data[4],
m1.Data[5] + m2.Data[5],
m1.Data[6] + m2.Data[6],
m1.Data[7] + m2.Data[7],
//Array indices:
// 00, 10, 20, 30,
// 01, 11, 21, 31,
// 02, 12, 22, 32,
// 03, 13, 23, 33,
m1.Data[8] + m2.Data[8],
m1.Data[9] + m2.Data[9],
m1.Data[10] + m2.Data[10],
m1.Data[11] + m2.Data[11],
//Improves performance by ~8%
m00 := m.Data[0][0]
m01 := m.Data[0][1]
m02 := m.Data[0][2]
m03 := m.Data[0][3]
m1.Data[12] + m2.Data[12],
m1.Data[13] + m2.Data[13],
m1.Data[14] + m2.Data[14],
m1.Data[15] + m2.Data[15],
m10 := m.Data[1][0]
m11 := m.Data[1][1]
m12 := m.Data[1][2]
m13 := m.Data[1][3]
m20 := m.Data[2][0]
m21 := m.Data[2][1]
m22 := m.Data[2][2]
m23 := m.Data[2][3]
m30 := m.Data[3][0]
m31 := m.Data[3][1]
m32 := m.Data[3][2]
m33 := m.Data[3][3]
m.Data = [4][4]float32{
{
m00*m2.Data[0][0] + m10*m2.Data[0][1] + m20*m2.Data[0][2] + m30*m2.Data[0][3],
m01*m2.Data[0][0] + m11*m2.Data[0][1] + m21*m2.Data[0][2] + m31*m2.Data[0][3],
m02*m2.Data[0][0] + m12*m2.Data[0][1] + m22*m2.Data[0][2] + m32*m2.Data[0][3],
m03*m2.Data[0][0] + m13*m2.Data[0][1] + m23*m2.Data[0][2] + m33*m2.Data[0][3],
},
{
m00*m2.Data[1][0] + m10*m2.Data[1][1] + m20*m2.Data[1][2] + m30*m2.Data[1][3],
m01*m2.Data[1][0] + m11*m2.Data[1][1] + m21*m2.Data[1][2] + m31*m2.Data[1][3],
m02*m2.Data[1][0] + m12*m2.Data[1][1] + m22*m2.Data[1][2] + m32*m2.Data[1][3],
m03*m2.Data[1][0] + m13*m2.Data[1][1] + m23*m2.Data[1][2] + m33*m2.Data[1][3],
},
{
m00*m2.Data[2][0] + m10*m2.Data[2][1] + m20*m2.Data[2][2] + m30*m2.Data[2][3],
m01*m2.Data[2][0] + m11*m2.Data[2][1] + m21*m2.Data[2][2] + m31*m2.Data[2][3],
m02*m2.Data[2][0] + m12*m2.Data[2][1] + m22*m2.Data[2][2] + m32*m2.Data[2][3],
m03*m2.Data[2][0] + m13*m2.Data[2][1] + m23*m2.Data[2][2] + m33*m2.Data[2][3],
},
{
m00*m2.Data[3][0] + m10*m2.Data[3][1] + m20*m2.Data[3][2] + m30*m2.Data[3][3],
m01*m2.Data[3][0] + m11*m2.Data[3][1] + m21*m2.Data[3][2] + m31*m2.Data[3][3],
m02*m2.Data[3][0] + m12*m2.Data[3][1] + m22*m2.Data[3][2] + m32*m2.Data[3][3],
m03*m2.Data[3][0] + m13*m2.Data[3][1] + m23*m2.Data[3][2] + m33*m2.Data[3][3],
},
}
return m
}
// Scale m *= x (element wise multiplication)
func (m *Mat4) Scale(x float32) *Mat4 {
m.Data[0][0] *= x
m.Data[0][1] *= x
m.Data[0][2] *= x
m.Data[0][3] *= x
m.Data[1][0] *= x
m.Data[1][1] *= x
m.Data[1][2] *= x
m.Data[1][3] *= x
m.Data[2][0] *= x
m.Data[2][1] *= x
m.Data[2][2] *= x
m.Data[2][3] *= x
m.Data[3][0] *= x
m.Data[3][1] *= x
m.Data[3][2] *= x
m.Data[3][3] *= x
return m
}
func (v *Mat4) Clone() *Mat4 {
return &Mat4{Data: v.Data}
}
func (m *Mat4) Eq(m2 *Mat4) bool {
return m.Data == m2.Data
}
func (m *Mat4) Transpose() *Mat4 {
m.Data = [4][4]float32{
{m.Data[0][0], m.Data[1][0], m.Data[2][0], m.Data[3][0]},
{m.Data[0][1], m.Data[1][1], m.Data[2][1], m.Data[3][1]},
{m.Data[0][2], m.Data[1][2], m.Data[2][2], m.Data[3][2]},
{m.Data[0][3], m.Data[1][3], m.Data[2][3], m.Data[3][3]},
}
return m
}
func (m *Mat4) Determinant() float32 {
// Many thanks to the C++ GLM project here :)
coef00 := m.Data[2][2]*m.Data[3][3] - m.Data[3][2]*m.Data[2][3]
coef02 := m.Data[1][2]*m.Data[3][3] - m.Data[3][2]*m.Data[1][3]
coef03 := m.Data[1][2]*m.Data[2][3] - m.Data[2][2]*m.Data[1][3]
coef04 := m.Data[2][1]*m.Data[3][3] - m.Data[3][1]*m.Data[2][3]
coef06 := m.Data[1][1]*m.Data[3][3] - m.Data[3][1]*m.Data[1][3]
coef07 := m.Data[1][1]*m.Data[2][3] - m.Data[2][1]*m.Data[1][3]
coef08 := m.Data[2][1]*m.Data[3][2] - m.Data[3][1]*m.Data[2][2]
coef10 := m.Data[1][1]*m.Data[3][2] - m.Data[3][1]*m.Data[1][2]
coef11 := m.Data[1][1]*m.Data[2][2] - m.Data[2][1]*m.Data[1][2]
coef12 := m.Data[2][0]*m.Data[3][3] - m.Data[3][0]*m.Data[2][3]
coef14 := m.Data[1][0]*m.Data[3][3] - m.Data[3][0]*m.Data[1][3]
coef15 := m.Data[1][0]*m.Data[2][3] - m.Data[2][0]*m.Data[1][3]
coef16 := m.Data[2][0]*m.Data[3][2] - m.Data[3][0]*m.Data[2][2]
coef18 := m.Data[1][0]*m.Data[3][2] - m.Data[3][0]*m.Data[1][2]
coef19 := m.Data[1][0]*m.Data[2][2] - m.Data[2][0]*m.Data[1][2]
coef20 := m.Data[2][0]*m.Data[3][1] - m.Data[3][0]*m.Data[2][1]
coef22 := m.Data[1][0]*m.Data[3][1] - m.Data[3][0]*m.Data[1][1]
coef23 := m.Data[1][0]*m.Data[2][1] - m.Data[2][0]*m.Data[1][1]
fac0 := NewVec4(coef00, coef00, coef02, coef03)
fac1 := NewVec4(coef04, coef04, coef06, coef07)
fac2 := NewVec4(coef08, coef08, coef10, coef11)
fac3 := NewVec4(coef12, coef12, coef14, coef15)
fac4 := NewVec4(coef16, coef16, coef18, coef19)
fac5 := NewVec4(coef20, coef20, coef22, coef23)
vec0 := NewVec4(m.Data[1][0], m.Data[0][0], m.Data[0][0], m.Data[0][0])
vec1 := NewVec4(m.Data[1][1], m.Data[0][1], m.Data[0][1], m.Data[0][1])
vec2 := NewVec4(m.Data[1][2], m.Data[0][2], m.Data[0][2], m.Data[0][2])
vec3 := NewVec4(m.Data[1][3], m.Data[0][3], m.Data[0][3], m.Data[0][3])
inv0 := NewVec4(
vec1.X()*fac0.X()-vec2.X()*fac1.X()+vec3.X()*fac2.X(),
vec1.Y()*fac0.Y()-vec2.Y()*fac1.Y()+vec3.Y()*fac2.Y(),
vec1.Z()*fac0.Z()-vec2.Z()*fac1.Z()+vec3.Z()*fac2.Z(),
vec1.W()*fac0.W()-vec2.W()*fac1.W()+vec3.W()*fac2.W(),
)
inv1 := NewVec4(
vec0.X()*fac0.X()-vec2.X()*fac3.X()+vec3.X()*fac4.X(),
vec0.Y()*fac0.Y()-vec2.Y()*fac3.Y()+vec3.Y()*fac4.Y(),
vec0.Z()*fac0.Z()-vec2.Z()*fac3.Z()+vec3.Z()*fac4.Z(),
vec0.W()*fac0.W()-vec2.W()*fac3.W()+vec3.W()*fac4.W(),
)
inv2 := NewVec4(
vec0.X()*fac1.X()-vec1.X()*fac3.X()+vec3.X()*fac5.X(),
vec0.Y()*fac1.Y()-vec1.Y()*fac3.Y()+vec3.Y()*fac5.Y(),
vec0.Z()*fac1.Z()-vec1.Z()*fac3.Z()+vec3.Z()*fac5.Z(),
vec0.W()*fac1.W()-vec1.W()*fac3.W()+vec3.W()*fac5.W(),
)
inv3 := NewVec4(
vec0.X()*fac2.X()-vec1.X()*fac4.X()+vec2.X()*fac5.X(),
vec0.Y()*fac2.Y()-vec1.Y()*fac4.Y()+vec2.Y()*fac5.Y(),
vec0.Z()*fac2.Z()-vec1.Z()*fac4.Z()+vec2.Z()*fac5.Z(),
vec0.W()*fac2.W()-vec1.W()*fac4.W()+vec2.W()*fac5.W(),
)
signA := NewVec4(+1, -1, +1, -1)
signB := NewVec4(-1, +1, -1, +1)
inverse := NewMat4Arr(
inv0.ScaleVec(&signA).Data,
inv1.ScaleVec(&signB).Data,
inv2.ScaleVec(&signA).Data,
inv3.ScaleVec(&signB).Data,
)
row0 := NewVec4(inverse.Data[0][0], inverse.Data[1][0], inverse.Data[2][0], inverse.Data[3][0])
dot0 := NewVec4Arr(row0.ScaleArr(m.Data[0]).Data)
det := (dot0.X() + dot0.Y()) + (dot0.Z() + dot0.W())
return det
}
// Invert inverts this matrix.
//
// Note that the inverse is not defined if the determinant is zero or extremely small.
// In the case the determinant is zero the matrix will (usually) get filled with infinities
func (m *Mat4) Invert() *Mat4 {
// Many thanks to the C++ GLM project here :)
coef00 := m.Data[2][2]*m.Data[3][3] - m.Data[3][2]*m.Data[2][3]
coef02 := m.Data[1][2]*m.Data[3][3] - m.Data[3][2]*m.Data[1][3]
coef03 := m.Data[1][2]*m.Data[2][3] - m.Data[2][2]*m.Data[1][3]
coef04 := m.Data[2][1]*m.Data[3][3] - m.Data[3][1]*m.Data[2][3]
coef06 := m.Data[1][1]*m.Data[3][3] - m.Data[3][1]*m.Data[1][3]
coef07 := m.Data[1][1]*m.Data[2][3] - m.Data[2][1]*m.Data[1][3]
coef08 := m.Data[2][1]*m.Data[3][2] - m.Data[3][1]*m.Data[2][2]
coef10 := m.Data[1][1]*m.Data[3][2] - m.Data[3][1]*m.Data[1][2]
coef11 := m.Data[1][1]*m.Data[2][2] - m.Data[2][1]*m.Data[1][2]
coef12 := m.Data[2][0]*m.Data[3][3] - m.Data[3][0]*m.Data[2][3]
coef14 := m.Data[1][0]*m.Data[3][3] - m.Data[3][0]*m.Data[1][3]
coef15 := m.Data[1][0]*m.Data[2][3] - m.Data[2][0]*m.Data[1][3]
coef16 := m.Data[2][0]*m.Data[3][2] - m.Data[3][0]*m.Data[2][2]
coef18 := m.Data[1][0]*m.Data[3][2] - m.Data[3][0]*m.Data[1][2]
coef19 := m.Data[1][0]*m.Data[2][2] - m.Data[2][0]*m.Data[1][2]
coef20 := m.Data[2][0]*m.Data[3][1] - m.Data[3][0]*m.Data[2][1]
coef22 := m.Data[1][0]*m.Data[3][1] - m.Data[3][0]*m.Data[1][1]
coef23 := m.Data[1][0]*m.Data[2][1] - m.Data[2][0]*m.Data[1][1]
fac0 := NewVec4(coef00, coef00, coef02, coef03)
fac1 := NewVec4(coef04, coef04, coef06, coef07)
fac2 := NewVec4(coef08, coef08, coef10, coef11)
fac3 := NewVec4(coef12, coef12, coef14, coef15)
fac4 := NewVec4(coef16, coef16, coef18, coef19)
fac5 := NewVec4(coef20, coef20, coef22, coef23)
vec0 := NewVec4(m.Data[1][0], m.Data[0][0], m.Data[0][0], m.Data[0][0])
vec1 := NewVec4(m.Data[1][1], m.Data[0][1], m.Data[0][1], m.Data[0][1])
vec2 := NewVec4(m.Data[1][2], m.Data[0][2], m.Data[0][2], m.Data[0][2])
vec3 := NewVec4(m.Data[1][3], m.Data[0][3], m.Data[0][3], m.Data[0][3])
inv0 := NewVec4(
vec1.X()*fac0.X()-vec2.X()*fac1.X()+vec3.X()*fac2.X(),
vec1.Y()*fac0.Y()-vec2.Y()*fac1.Y()+vec3.Y()*fac2.Y(),
vec1.Z()*fac0.Z()-vec2.Z()*fac1.Z()+vec3.Z()*fac2.Z(),
vec1.W()*fac0.W()-vec2.W()*fac1.W()+vec3.W()*fac2.W(),
)
inv1 := NewVec4(
vec0.X()*fac0.X()-vec2.X()*fac3.X()+vec3.X()*fac4.X(),
vec0.Y()*fac0.Y()-vec2.Y()*fac3.Y()+vec3.Y()*fac4.Y(),
vec0.Z()*fac0.Z()-vec2.Z()*fac3.Z()+vec3.Z()*fac4.Z(),
vec0.W()*fac0.W()-vec2.W()*fac3.W()+vec3.W()*fac4.W(),
)
inv2 := NewVec4(
vec0.X()*fac1.X()-vec1.X()*fac3.X()+vec3.X()*fac5.X(),
vec0.Y()*fac1.Y()-vec1.Y()*fac3.Y()+vec3.Y()*fac5.Y(),
vec0.Z()*fac1.Z()-vec1.Z()*fac3.Z()+vec3.Z()*fac5.Z(),
vec0.W()*fac1.W()-vec1.W()*fac3.W()+vec3.W()*fac5.W(),
)
inv3 := NewVec4(
vec0.X()*fac2.X()-vec1.X()*fac4.X()+vec2.X()*fac5.X(),
vec0.Y()*fac2.Y()-vec1.Y()*fac4.Y()+vec2.Y()*fac5.Y(),
vec0.Z()*fac2.Z()-vec1.Z()*fac4.Z()+vec2.Z()*fac5.Z(),
vec0.W()*fac2.W()-vec1.W()*fac4.W()+vec2.W()*fac5.W(),
)
signA := NewVec4(+1, -1, +1, -1)
signB := NewVec4(-1, +1, -1, +1)
inverse := NewMat4Arr(
inv0.ScaleVec(&signA).Data,
inv1.ScaleVec(&signB).Data,
inv2.ScaleVec(&signA).Data,
inv3.ScaleVec(&signB).Data,
)
row0 := NewVec4(inverse.Data[0][0], inverse.Data[1][0], inverse.Data[2][0], inverse.Data[3][0])
dot0 := NewVec4Arr(row0.ScaleArr(m.Data[0]).Data)
det := (dot0.X() + dot0.Y()) + (dot0.Z() + dot0.W())
inverseDet := 1.0 / det
m.Data = inverse.Scale(inverseDet).Data
return m
}
// InvertAndTranspose is equivalent to m.Invert().Transpose(), that is invert first, then transpose the inverted matrix.
//
// This function is provided as a convenience and as a small optimization, as it inlines the invert and transpose functions which means we only
// have 1 function call.
//
// Additionally, the inverse of the matrix is written to the matrix immediately transposed instead of writing the inverse and then transposing it in a second operation.
func (m *Mat4) InvertAndTranspose() *Mat4 {
// Many thanks to the C++ GLM project here :)
coef00 := m.Data[2][2]*m.Data[3][3] - m.Data[3][2]*m.Data[2][3]
coef02 := m.Data[1][2]*m.Data[3][3] - m.Data[3][2]*m.Data[1][3]
coef03 := m.Data[1][2]*m.Data[2][3] - m.Data[2][2]*m.Data[1][3]
coef04 := m.Data[2][1]*m.Data[3][3] - m.Data[3][1]*m.Data[2][3]
coef06 := m.Data[1][1]*m.Data[3][3] - m.Data[3][1]*m.Data[1][3]
coef07 := m.Data[1][1]*m.Data[2][3] - m.Data[2][1]*m.Data[1][3]
coef08 := m.Data[2][1]*m.Data[3][2] - m.Data[3][1]*m.Data[2][2]
coef10 := m.Data[1][1]*m.Data[3][2] - m.Data[3][1]*m.Data[1][2]
coef11 := m.Data[1][1]*m.Data[2][2] - m.Data[2][1]*m.Data[1][2]
coef12 := m.Data[2][0]*m.Data[3][3] - m.Data[3][0]*m.Data[2][3]
coef14 := m.Data[1][0]*m.Data[3][3] - m.Data[3][0]*m.Data[1][3]
coef15 := m.Data[1][0]*m.Data[2][3] - m.Data[2][0]*m.Data[1][3]
coef16 := m.Data[2][0]*m.Data[3][2] - m.Data[3][0]*m.Data[2][2]
coef18 := m.Data[1][0]*m.Data[3][2] - m.Data[3][0]*m.Data[1][2]
coef19 := m.Data[1][0]*m.Data[2][2] - m.Data[2][0]*m.Data[1][2]
coef20 := m.Data[2][0]*m.Data[3][1] - m.Data[3][0]*m.Data[2][1]
coef22 := m.Data[1][0]*m.Data[3][1] - m.Data[3][0]*m.Data[1][1]
coef23 := m.Data[1][0]*m.Data[2][1] - m.Data[2][0]*m.Data[1][1]
fac0 := NewVec4(coef00, coef00, coef02, coef03)
fac1 := NewVec4(coef04, coef04, coef06, coef07)
fac2 := NewVec4(coef08, coef08, coef10, coef11)
fac3 := NewVec4(coef12, coef12, coef14, coef15)
fac4 := NewVec4(coef16, coef16, coef18, coef19)
fac5 := NewVec4(coef20, coef20, coef22, coef23)
vec0 := NewVec4(m.Data[1][0], m.Data[0][0], m.Data[0][0], m.Data[0][0])
vec1 := NewVec4(m.Data[1][1], m.Data[0][1], m.Data[0][1], m.Data[0][1])
vec2 := NewVec4(m.Data[1][2], m.Data[0][2], m.Data[0][2], m.Data[0][2])
vec3 := NewVec4(m.Data[1][3], m.Data[0][3], m.Data[0][3], m.Data[0][3])
inv0 := NewVec4(
vec1.X()*fac0.X()-vec2.X()*fac1.X()+vec3.X()*fac2.X(),
vec1.Y()*fac0.Y()-vec2.Y()*fac1.Y()+vec3.Y()*fac2.Y(),
vec1.Z()*fac0.Z()-vec2.Z()*fac1.Z()+vec3.Z()*fac2.Z(),
vec1.W()*fac0.W()-vec2.W()*fac1.W()+vec3.W()*fac2.W(),
)
inv1 := NewVec4(
vec0.X()*fac0.X()-vec2.X()*fac3.X()+vec3.X()*fac4.X(),
vec0.Y()*fac0.Y()-vec2.Y()*fac3.Y()+vec3.Y()*fac4.Y(),
vec0.Z()*fac0.Z()-vec2.Z()*fac3.Z()+vec3.Z()*fac4.Z(),
vec0.W()*fac0.W()-vec2.W()*fac3.W()+vec3.W()*fac4.W(),
)
inv2 := NewVec4(
vec0.X()*fac1.X()-vec1.X()*fac3.X()+vec3.X()*fac5.X(),
vec0.Y()*fac1.Y()-vec1.Y()*fac3.Y()+vec3.Y()*fac5.Y(),
vec0.Z()*fac1.Z()-vec1.Z()*fac3.Z()+vec3.Z()*fac5.Z(),
vec0.W()*fac1.W()-vec1.W()*fac3.W()+vec3.W()*fac5.W(),
)
inv3 := NewVec4(
vec0.X()*fac2.X()-vec1.X()*fac4.X()+vec2.X()*fac5.X(),
vec0.Y()*fac2.Y()-vec1.Y()*fac4.Y()+vec2.Y()*fac5.Y(),
vec0.Z()*fac2.Z()-vec1.Z()*fac4.Z()+vec2.Z()*fac5.Z(),
vec0.W()*fac2.W()-vec1.W()*fac4.W()+vec2.W()*fac5.W(),
)
signA := NewVec4(+1, -1, +1, -1)
signB := NewVec4(-1, +1, -1, +1)
inverse := NewMat4Arr(
inv0.ScaleVec(&signA).Data,
inv1.ScaleVec(&signB).Data,
inv2.ScaleVec(&signA).Data,
inv3.ScaleVec(&signB).Data,
)
row0 := NewVec4(inverse.Data[0][0], inverse.Data[1][0], inverse.Data[2][0], inverse.Data[3][0])
dot0 := NewVec4Arr(row0.ScaleArr(m.Data[0]).Data)
det := (dot0.X() + dot0.Y()) + (dot0.Z() + dot0.W())
inverseDet := 1.0 / det
inverse.Scale(inverseDet)
// Manually inline transpose
m.Data = [4][4]float32{
{inverse.Data[0][0], inverse.Data[1][0], inverse.Data[2][0], inverse.Data[3][0]},
{inverse.Data[0][1], inverse.Data[1][1], inverse.Data[2][1], inverse.Data[3][1]},
{inverse.Data[0][2], inverse.Data[1][2], inverse.Data[2][2], inverse.Data[3][2]},
{inverse.Data[0][3], inverse.Data[1][3], inverse.Data[2][3], inverse.Data[3][3]},
}
return m
}
// ToMat2 returns a Mat2 that contains the top-left 2x2 section of the Mat4.
// That is, columns 2 and 3, and rows 2 and 3, are dropped.
func (m *Mat4) ToMat2() Mat2 {
return Mat2{
Data: [2][2]float32{
{m.Data[0][0], m.Data[0][1]},
{m.Data[1][0], m.Data[1][1]},
},
}
}
//SubMat4 m3 = m1 - m2
func SubMat4(m1, m2 *Mat4) *Mat4 {
return &Mat4{
Data: [16]float32{
m1.Data[0] - m2.Data[0],
m1.Data[1] - m2.Data[1],
m1.Data[2] - m2.Data[2],
m1.Data[3] - m2.Data[3],
m1.Data[4] - m2.Data[4],
m1.Data[5] - m2.Data[5],
m1.Data[6] - m2.Data[6],
m1.Data[7] - m2.Data[7],
m1.Data[8] - m2.Data[8],
m1.Data[9] - m2.Data[9],
m1.Data[10] - m2.Data[10],
m1.Data[11] - m2.Data[11],
m1.Data[12] - m2.Data[12],
m1.Data[13] - m2.Data[13],
m1.Data[14] - m2.Data[14],
m1.Data[15] - m2.Data[15],
// ToMat3 returns a Mat3 that contains the top-left 3x3 section of the Mat4.
// That is, column 3 and row 3 are dropped.
func (m *Mat4) ToMat3() Mat3 {
return Mat3{
Data: [3][3]float32{
{m.Data[0][0], m.Data[0][1], m.Data[0][2]},
{m.Data[1][0], m.Data[1][1], m.Data[1][2]},
{m.Data[2][0], m.Data[2][1], m.Data[2][2]},
},
}
}
//NewMat4Id returns the 4x4 identity matrix
func NewMat4Id() *Mat4 {
return &Mat4{
Data: [16]float32{
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
// AddMat4 m3 = m1 + m2
func AddMat4(m1, m2 *Mat4) Mat4 {
return Mat4{
Data: [4][4]float32{
{
m1.Data[0][0] + m2.Data[0][0],
m1.Data[0][1] + m2.Data[0][1],
m1.Data[0][2] + m2.Data[0][2],
m1.Data[0][3] + m2.Data[0][3],
},
{
m1.Data[1][0] + m2.Data[1][0],
m1.Data[1][1] + m2.Data[1][1],
m1.Data[1][2] + m2.Data[1][2],
m1.Data[1][3] + m2.Data[1][3],
},
{
m1.Data[2][0] + m2.Data[2][0],
m1.Data[2][1] + m2.Data[2][1],
m1.Data[2][2] + m2.Data[2][2],
m1.Data[2][3] + m2.Data[2][3],
},
{
m1.Data[3][0] + m2.Data[3][0],
m1.Data[3][1] + m2.Data[3][1],
m1.Data[3][2] + m2.Data[3][2],
m1.Data[3][3] + m2.Data[3][3],
},
},
}
}
// SubMat4 m3 = m1 - m2
func SubMat4(m1, m2 *Mat4) Mat4 {
return Mat4{
Data: [4][4]float32{
{
m1.Data[0][0] - m2.Data[0][0],
m1.Data[0][1] - m2.Data[0][1],
m1.Data[0][2] - m2.Data[0][2],
m1.Data[0][3] - m2.Data[0][3],
},
{
m1.Data[1][0] - m2.Data[1][0],
m1.Data[1][1] - m2.Data[1][1],
m1.Data[1][2] - m2.Data[1][2],
m1.Data[1][3] - m2.Data[1][3],
},
{
m1.Data[2][0] - m2.Data[2][0],
m1.Data[2][1] - m2.Data[2][1],
m1.Data[2][2] - m2.Data[2][2],
m1.Data[2][3] - m2.Data[2][3],
},
{
m1.Data[3][0] - m2.Data[3][0],
m1.Data[3][1] - m2.Data[3][1],
m1.Data[3][2] - m2.Data[3][2],
m1.Data[3][3] - m2.Data[3][3],
},
},
}
}
// MulMat4 m3 = m1 * m2
func MulMat4(m1, m2 *Mat4) Mat4 {
m00 := m1.Data[0][0]
m01 := m1.Data[0][1]
m02 := m1.Data[0][2]
m03 := m1.Data[0][3]
m10 := m1.Data[1][0]
m11 := m1.Data[1][1]
m12 := m1.Data[1][2]
m13 := m1.Data[1][3]
m20 := m1.Data[2][0]
m21 := m1.Data[2][1]
m22 := m1.Data[2][2]
m23 := m1.Data[2][3]
m30 := m1.Data[3][0]
m31 := m1.Data[3][1]
m32 := m1.Data[3][2]
m33 := m1.Data[3][3]
return Mat4{
Data: [4][4]float32{
{
m00*m2.Data[0][0] + m10*m2.Data[0][1] + m20*m2.Data[0][2] + m30*m2.Data[0][3],
m01*m2.Data[0][0] + m11*m2.Data[0][1] + m21*m2.Data[0][2] + m31*m2.Data[0][3],
m02*m2.Data[0][0] + m12*m2.Data[0][1] + m22*m2.Data[0][2] + m32*m2.Data[0][3],
m03*m2.Data[0][0] + m13*m2.Data[0][1] + m23*m2.Data[0][2] + m33*m2.Data[0][3],
},
{
m00*m2.Data[1][0] + m10*m2.Data[1][1] + m20*m2.Data[1][2] + m30*m2.Data[1][3],
m01*m2.Data[1][0] + m11*m2.Data[1][1] + m21*m2.Data[1][2] + m31*m2.Data[1][3],
m02*m2.Data[1][0] + m12*m2.Data[1][1] + m22*m2.Data[1][2] + m32*m2.Data[1][3],
m03*m2.Data[1][0] + m13*m2.Data[1][1] + m23*m2.Data[1][2] + m33*m2.Data[1][3],
},
{
m00*m2.Data[2][0] + m10*m2.Data[2][1] + m20*m2.Data[2][2] + m30*m2.Data[2][3],
m01*m2.Data[2][0] + m11*m2.Data[2][1] + m21*m2.Data[2][2] + m31*m2.Data[2][3],
m02*m2.Data[2][0] + m12*m2.Data[2][1] + m22*m2.Data[2][2] + m32*m2.Data[2][3],
m03*m2.Data[2][0] + m13*m2.Data[2][1] + m23*m2.Data[2][2] + m33*m2.Data[2][3],
},
{
m00*m2.Data[3][0] + m10*m2.Data[3][1] + m20*m2.Data[3][2] + m30*m2.Data[3][3],
m01*m2.Data[3][0] + m11*m2.Data[3][1] + m21*m2.Data[3][2] + m31*m2.Data[3][3],
m02*m2.Data[3][0] + m12*m2.Data[3][1] + m22*m2.Data[3][2] + m32*m2.Data[3][3],
m03*m2.Data[3][0] + m13*m2.Data[3][1] + m23*m2.Data[3][2] + m33*m2.Data[3][3],
},
},
}
}
// MulMat4Vec4 v2 = m1 * v1
func MulMat4Vec4(m1 *Mat4, v1 *Vec4) Vec4 {
return Vec4{
Data: [4]float32{
m1.Data[0][0]*v1.Data[0] + m1.Data[1][0]*v1.Data[1] + m1.Data[2][0]*v1.Data[2] + m1.Data[3][0]*v1.Data[3],
m1.Data[0][1]*v1.Data[0] + m1.Data[1][1]*v1.Data[1] + m1.Data[2][1]*v1.Data[2] + m1.Data[3][1]*v1.Data[3],
m1.Data[0][2]*v1.Data[0] + m1.Data[1][2]*v1.Data[1] + m1.Data[2][2]*v1.Data[2] + m1.Data[3][2]*v1.Data[3],
m1.Data[0][3]*v1.Data[0] + m1.Data[1][3]*v1.Data[1] + m1.Data[2][3]*v1.Data[2] + m1.Data[3][3]*v1.Data[3],
},
}
}
// NewMat4Id returns the 4x4 identity matrix
func NewMat4Id() Mat4 {
return Mat4{
Data: [4][4]float32{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
},
}
}
func NewMat4Diag(diagVal float32) Mat4 {
return Mat4{
Data: [4][4]float32{
{diagVal, 0, 0, 0},
{0, diagVal, 0, 0},
{0, 0, diagVal, 0},
{0, 0, 0, diagVal},
},
}
}
func NewMat4DiagArr(diag [4]float32) Mat4 {
return Mat4{
Data: [4][4]float32{
{diag[0], 0, 0, 0},
{0, diag[1], 0, 0},
{0, 0, diag[2], 0},
{0, 0, 0, diag[3]},
},
}
}
func NewMat4Vec4(col0, col1, col2, col3 *Vec4) Mat4 {
return Mat4{
Data: [4][4]float32{
col0.Data,
col1.Data,
col2.Data,
col3.Data,
},
}
}
func NewMat4Arr(col0, col1, col2, col3 [4]float32) *Mat4 {
return &Mat4{
Data: [4][4]float32{
col0,
col1,
col2,
col3,
},
}
}

325
gglm/mat4_test.go Executable file
View File

@ -0,0 +1,325 @@
package gglm_test
import (
"testing"
"github.com/bloeys/gglm/gglm"
)
var (
mulMat4Vec4Res gglm.Vec4
)
func TestMat4GetSet(t *testing.T) {
m1 := gglm.Mat4{}
m1.Set(0, 1, -10)
m1.Set(1, 0, 55)
m1.Set(2, 2, 99)
m1.Set(3, 3, 513)
if m1.Get(0, 1) != -10 {
t.Errorf("Got: %v; Expected: %v", m1.Get(0, 1), -10)
}
if m1.Get(1, 0) != 55 {
t.Errorf("Got: %v; Expected: %v", m1.Get(1, 0), 55)
}
if m1.Get(2, 2) != 99 {
t.Errorf("Got: %v; Expected: %v", m1.Get(2, 2), 99)
}
if m1.Get(3, 3) != 513 {
t.Errorf("Got: %v; Expected: %v", m1.Get(3, 3), 513)
}
}
func TestMat4Id(t *testing.T) {
correctAns := gglm.Mat4{
Data: [4][4]float32{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
}}
m1 := gglm.NewMat4Id()
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestSubMat4(t *testing.T) {
correctAns := gglm.Mat4{
Data: [4][4]float32{
{-16, -16, -16, -16},
{-16, -16, -16, -16},
{-16, -16, -16, -16},
{-16, -16, -16, -16},
}}
m1 := &gglm.Mat4{
Data: [4][4]float32{
{1, 5, 9, 13},
{2, 6, 10, 14},
{3, 7, 11, 15},
{4, 8, 12, 16},
}}
m2 := &gglm.Mat4{
Data: [4][4]float32{
{17, 21, 25, 29},
{18, 22, 26, 30},
{19, 23, 27, 31},
{20, 24, 28, 32},
}}
result := gglm.SubMat4(m1, m2)
m1.Sub(m2)
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestAddMat4(t *testing.T) {
correctAns := gglm.Mat4{
Data: [4][4]float32{
{18, 26, 34, 42},
{20, 28, 36, 44},
{22, 30, 38, 46},
{24, 32, 40, 48},
}}
m1 := &gglm.Mat4{
Data: [4][4]float32{
{1, 5, 9, 13},
{2, 6, 10, 14},
{3, 7, 11, 15},
{4, 8, 12, 16},
}}
m2 := &gglm.Mat4{
Data: [4][4]float32{
{17, 21, 25, 29},
{18, 22, 26, 30},
{19, 23, 27, 31},
{20, 24, 28, 32},
}}
result := gglm.AddMat4(m1, m2)
m1.Add(m2)
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestMulMat4(t *testing.T) {
correctAns := gglm.Mat4{
Data: [4][4]float32{
{250, 618, 986, 1354},
{260, 644, 1028, 1412},
{270, 670, 1070, 1470},
{280, 696, 1112, 1528},
}}
m1 := &gglm.Mat4{
Data: [4][4]float32{
{1, 5, 9, 13},
{2, 6, 10, 14},
{3, 7, 11, 15},
{4, 8, 12, 16},
}}
m2 := &gglm.Mat4{
Data: [4][4]float32{
{17, 21, 25, 29},
{18, 22, 26, 30},
{19, 23, 27, 31},
{20, 24, 28, 32},
}}
result := gglm.MulMat4(m1, m2)
m1.Mul(m2)
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
if !m1.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", m1.String(), correctAns.String())
}
}
func TestMulMat4Vec4(t *testing.T) {
m := &gglm.Mat4{
Data: [4][4]float32{
{1, 5, 9, 13},
{2, 6, 10, 14},
{3, 7, 11, 15},
{4, 8, 12, 16},
}}
v := &gglm.Vec4{Data: [4]float32{1, 2, 3, 4}}
result := gglm.MulMat4Vec4(m, v)
correctAns := gglm.Vec4{Data: [4]float32{30, 70, 110, 150}}
if !result.Eq(&correctAns) {
t.Errorf("Got: %v; Expected: %v", result.String(), correctAns.String())
}
}
func TestTransposeMat4(t *testing.T) {
m := gglm.NewMat4Id()
ans := gglm.NewMat4Id()
if !m.Transpose().Transpose().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
if !m.Transpose().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
m.Data = [4][4]float32{
{00, 01, 02, 03},
{10, 11, 12, 13},
{20, 21, 22, 23},
{30, 31, 32, 33},
}
ans.Data = [4][4]float32{
{00, 10, 20, 30},
{01, 11, 21, 31},
{02, 12, 22, 32},
{03, 13, 23, 33},
}
if !m.Transpose().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
}
func TestDeterminantMat4(t *testing.T) {
m := gglm.NewMat4Id()
ans := float32(1)
if m.Determinant() != ans {
t.Errorf("Got: %f; Expected: %f", m.Determinant(), ans)
}
m.Data = [4][4]float32{
{1, 0, 2, 1},
{2, 1, 3, 0},
{3, 0, 4, 1},
{4, 1, 5, 1},
}
ans = -2
if m.Determinant() != ans {
t.Errorf("Got: %f; Expected: %f", m.Determinant(), ans)
}
}
func TestInvertMat4(t *testing.T) {
m := gglm.NewMat4Id()
ans := gglm.NewMat4Id()
if !m.Invert().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
m.Data = [4][4]float32{
{1, 0, 2, 1},
{2, 1, 3, 0},
{3, 0, 4, 1},
{4, 1, 5, 1},
}
ans.Data = [4][4]float32{
{-1, -1, 0, 1},
{0.5, 0, -3 / 2.0, 1},
{0.5, 1, 0.5, -1},
{1, -1, -1, 1},
}
if !m.Invert().Eq(&ans) {
t.Errorf("Got: %v\nExpected: %v;\n", m.String(), ans.String())
}
}
func TestInvertAndTransposeMat4(t *testing.T) {
m := gglm.NewMat4Id()
ans := gglm.NewMat4Id()
ans.Transpose()
if !m.InvertAndTranspose().Eq(&ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
m.Data = [4][4]float32{
{1, 0, 2, 1},
{2, 1, 3, 0},
{3, 0, 4, 1},
{4, 1, 5, 1},
}
ans.Data = [4][4]float32{
{-1, -1, 0, 1},
{0.5, 0, -3 / 2.0, 1},
{0.5, 1, 0.5, -1},
{1, -1, -1, 1},
}
if !m.InvertAndTranspose().Eq(ans.Transpose()) {
t.Errorf("Got: %v\nExpected: %v;\n", m.String(), ans.String())
}
}
func BenchmarkMulMat4(b *testing.B) {
m1 := gglm.NewMat4Id()
m2 := gglm.NewMat4Id()
for i := 0; i < b.N; i++ {
m1.Mul(&m2)
}
}
func BenchmarkMulMat4Vec4(b *testing.B) {
m1 := gglm.NewMat4Id()
v1 := gglm.Vec4{}
for i := 0; i < b.N; i++ {
mulMat4Vec4Res = gglm.MulMat4Vec4(&m1, &v1)
}
}
var mat4InvertRes *gglm.Mat4
func BenchmarkMat4Invert(b *testing.B) {
m1 := gglm.NewMat4Id()
for i := 0; i < b.N; i++ {
mat4InvertRes = m1.Invert()
}
}

134
gglm/quat.go Executable file
View File

@ -0,0 +1,134 @@
package gglm
import (
"fmt"
)
var _ Swizzle4 = &Quat{}
var _ fmt.Stringer = &Quat{}
type Quat struct {
Vec4
}
// Eq checks for exact equality
func (q *Quat) Eq(q2 *Quat) bool {
return q.Data == q2.Data
}
// Angle returns the angle represented by this quaternion in radians
func (q *Quat) Angle() float32 {
if Abs32(q.Data[3]) > CosHalf {
a := Asin32(Sqrt32(q.Data[0]*q.Data[0]+q.Data[1]*q.Data[1]+q.Data[2]*q.Data[2])) * 2
if q.Data[3] < 0 {
return Pi*2 - a
}
return a
}
return Acos32(q.Data[3]) * 2
}
// Axis returns the rotation axis represented by this quaternion
func (q *Quat) Axis() Vec3 {
var t float32 = 1 - q.Data[3]*q.Data[3]
if t <= 0 {
return Vec3{Data: [3]float32{0, 0, 1}}
}
t = 1 / Sqrt32(t)
return Vec3{Data: [3]float32{
q.Data[0] * t,
q.Data[1] * t,
q.Data[2] * t,
}}
}
// NewQuatEulerVec takes rotations in radians and produces a rotation that
// rotates around the z-axis, y-axis and lastly x-axis.
func NewQuatEulerVec(v *Vec3) Quat {
return NewQuatEuler(v.X(), v.Y(), v.Z())
}
// NewQuatEuler takes rotations in radians and produces a rotation that
// rotates around the z-axis, y-axis and lastly x-axis.
func NewQuatEuler(x, y, z float32) Quat {
//Some other common terminology: x=roll, y=pitch, z=yaw
sinX, cosX := Sincos32(x * 0.5)
sinY, cosY := Sincos32(y * 0.5)
sinZ, cosZ := Sincos32(z * 0.5)
//This produces a z->y->x multiply order, but its written as XYZ.
//This is due to XYZ meaning independent rotation matrices, so Z is applied
//first, then Y matrix and lastly X.
//See this for more info: https://github.com/godotengine/godot/issues/6816#issuecomment-254592170
//
//Note: On most conversion tools putting the multiply order (e.g. ZYX for us) is required.
return Quat{
Vec4: Vec4{
Data: [4]float32{
sinX*cosY*cosZ - cosX*sinY*sinZ,
cosX*sinY*cosZ + sinX*cosY*sinZ,
cosX*cosY*sinZ - sinX*sinY*cosZ,
cosX*cosY*cosZ + sinX*sinY*sinZ,
},
},
}
}
// NewQuatAngleAxisVec produces a quaternion thats rotates rotRad radians around the *normalized* vector rotAxisNorm
func NewQuatAngleAxisVec(rotRad float32, rotAxisNorm *Vec3) Quat {
return NewQuatAngleAxis(rotRad, rotAxisNorm.X(), rotAxisNorm.Y(), rotAxisNorm.Z())
}
// NewQuatAngleAxis produces a quaternion thats rotates rotRad radians around the *normalized* vector rotAxisNorm
func NewQuatAngleAxis(rotRad float32, rotAxisNormX, rotAxisNormY, rotAxisNormZ float32) Quat {
s, c := Sincos32(rotRad * 0.5)
return Quat{
Vec4: Vec4{
Data: [4]float32{
rotAxisNormX * s,
rotAxisNormY * s,
rotAxisNormZ * s,
c,
},
},
}
}
func NewQuatId() Quat {
return Quat{
Vec4: Vec4{
Data: [4]float32{0, 0, 0, 1},
},
}
}
func NewQuat(x, y, z, w float32) Quat {
return Quat{
Vec4: Vec4{
Data: [4]float32{x, y, z, w},
},
}
}
func NewQuatArr(arr [4]float32) Quat {
return Quat{
Vec4: Vec4{
Data: arr,
},
}
}
func NewQuatVec(v *Vec4) Quat {
return Quat{
Vec4: Vec4{
Data: v.Data,
},
}
}

98
gglm/quat_test.go Executable file
View File

@ -0,0 +1,98 @@
package gglm_test
import (
"testing"
"github.com/bloeys/gglm/gglm"
)
func TestNewQuatEuler(t *testing.T) {
degs := gglm.NewVec3(180, 180, 180)
degs.Data = degs.AsRad().Data
q := gglm.NewQuatEulerVec(&degs)
ans := &gglm.Quat{Vec4: gglm.NewVec4(0, 0, 0, 1)}
if !gglm.EqF32(q.X(), ans.X()) || !gglm.EqF32(q.Y(), ans.Y()) || !gglm.EqF32(q.Z(), ans.Z()) || !gglm.EqF32(q.W(), ans.W()) {
t.Errorf("Got: %v; Expected: %v", q.String(), ans.String())
}
q = gglm.NewQuatEuler(180*gglm.Deg2Rad, 180*gglm.Deg2Rad, 180*gglm.Deg2Rad)
if !gglm.EqF32(q.X(), ans.X()) || !gglm.EqF32(q.Y(), ans.Y()) || !gglm.EqF32(q.Z(), ans.Z()) || !gglm.EqF32(q.W(), ans.W()) {
t.Errorf("Got: %v; Expected: %v", q.String(), ans.String())
}
}
func TestNewQuatAngleAxis(t *testing.T) {
rotAxis := gglm.NewVec3(0, 1, 0)
q := gglm.NewQuatAngleAxisVec(180*gglm.Deg2Rad, &rotAxis)
ans := &gglm.Quat{Vec4: gglm.NewVec4(0, 1, 0, 0)}
if !gglm.EqF32(q.X(), ans.X()) || !gglm.EqF32(q.Y(), ans.Y()) || !gglm.EqF32(q.Z(), ans.Z()) || !gglm.EqF32(q.W(), ans.W()) {
t.Errorf("Got: %v; Expected: %v", q.String(), ans.String())
}
}
func TestQuatAngle(t *testing.T) {
rotAxis := gglm.NewVec3(0, 1, 0)
quat := gglm.NewQuatAngleAxisVec(180*gglm.Deg2Rad, &rotAxis)
a := quat.Angle()
var ans float32 = 180.0 * gglm.Deg2Rad
if !gglm.EqF32(a, ans) {
t.Errorf("Got: %v; Expected: %v", a, ans)
}
rotAxis = gglm.NewVec3(1, 1, 0)
quat = gglm.NewQuatAngleAxisVec(90*gglm.Deg2Rad, rotAxis.Normalize())
a = quat.Angle()
ans = 90 * gglm.Deg2Rad
if !gglm.EqF32(a, ans) {
t.Errorf("Got: %v; Expected: %v", a, ans)
}
rotAxis = gglm.NewVec3(1, 1, 0)
quat = gglm.NewQuatAngleAxisVec(125*gglm.Deg2Rad, rotAxis.Normalize())
a = quat.Angle()
ans = 125 * gglm.Deg2Rad
if !gglm.EqF32(a, ans) {
t.Errorf("Got: %v; Expected: %v", a, ans)
}
}
func TestQuatAxis(t *testing.T) {
rotAxis := gglm.NewVec3(0, 1, 0)
quat := gglm.NewQuatAngleAxisVec(1, &rotAxis)
a := quat.Axis()
ans := gglm.NewVec3(0, 1, 0)
if !gglm.EqF32(a.X(), ans.X()) || !gglm.EqF32(a.Y(), ans.Y()) || !gglm.EqF32(a.Z(), ans.Z()) {
t.Errorf("Got: %v; Expected: %v", a.String(), ans.String())
}
rotAxis = gglm.NewVec3(1, 1, 0)
quat = gglm.NewQuatAngleAxisVec(1, rotAxis.Normalize())
a = quat.Axis()
ans = gglm.NewVec3(1, 1, 0)
ans.Normalize()
if !gglm.EqF32(a.X(), ans.X()) || !gglm.EqF32(a.Y(), ans.Y()) || !gglm.EqF32(a.Z(), ans.Z()) {
t.Errorf("Got: %v; Expected: %v", a.String(), ans.String())
}
rotAxis = gglm.NewVec3(67, 46, 32)
quat = gglm.NewQuatAngleAxisVec(1, rotAxis.Normalize())
a = quat.Axis()
ans = gglm.NewVec3(67, 46, 32)
ans.Normalize()
if !gglm.EqF32(a.X(), ans.X()) || !gglm.EqF32(a.Y(), ans.Y()) || !gglm.EqF32(a.Z(), ans.Z()) {
t.Errorf("Got: %v; Expected: %v", a.String(), ans.String())
}
}

76
gglm/scalar.go Executable file
View File

@ -0,0 +1,76 @@
package gglm
import (
"math"
"golang.org/x/exp/constraints"
)
// EqF32 true if abs(f1-f2) <= F32Epsilon
func EqF32(f1, f2 float32) bool {
return math.Abs(float64(f1-f2)) <= float64(F32Epsilon)
}
// EqF32Epsilon true if abs(f1-f2) <= eps
func EqF32Epsilon(f1, f2, eps float32) bool {
return math.Abs(float64(f1-f2)) <= float64(eps)
}
func Sin32(x float32) float32 {
return float32(math.Sin(float64(x)))
}
func Asin32(x float32) float32 {
return float32(math.Asin(float64(x)))
}
func Cos32(x float32) float32 {
return float32(math.Cos(float64(x)))
}
func Acos32(x float32) float32 {
return float32(math.Acos(float64(x)))
}
func Tan32(x float32) float32 {
return float32(math.Tan(float64(x)))
}
func Atan32(x float32) float32 {
return float32(math.Atan(float64(x)))
}
func Atan232(x, y float32) float32 {
return float32(math.Atan2(float64(y), float64(x)))
}
func Sincos32(x float32) (sinx, cosx float32) {
a, b := math.Sincos(float64(x))
return float32(a), float32(b)
}
func Abs32(x float32) float32 {
return float32(math.Abs(float64(x)))
}
func Sqrt32(x float32) float32 {
return float32(math.Sqrt(float64(x)))
}
// Clamp returns:
//
// min if x<min
// max if x>max
// x if x>=min && x<=max
func Clamp[T constraints.Ordered](x, min, max T) T {
if x < min {
return min
}
if x > max {
return max
}
return x
}

64
gglm/scalar_test.go Executable file
View File

@ -0,0 +1,64 @@
package gglm_test
import (
"testing"
"github.com/bloeys/gglm/gglm"
)
func TestClamp(t *testing.T) {
x := 5
ans := 5
if gglm.Clamp(x, 0, 10) != ans {
t.Errorf("Got: %v; Expected: %v", x, ans)
}
x = 10
ans = 10
if gglm.Clamp(x, 0, 10) != ans {
t.Errorf("Got: %v; Expected: %v", x, ans)
}
x = 20
ans = 10
if gglm.Clamp(x, 0, 10) != ans {
t.Errorf("Got: %v; Expected: %v", x, ans)
}
x = -10
ans = 0
if gglm.Clamp(x, 0, 10) != ans {
t.Errorf("Got: %v; Expected: %v", x, ans)
}
xf := 1.5
ansf := 1.5
if gglm.Clamp(xf, 0, 10) != ansf {
t.Errorf("Got: %v; Expected: %v", xf, ansf)
}
xf = 15
ansf = 10
if gglm.Clamp(xf, 0, 10) != ansf {
t.Errorf("Got: %v; Expected: %v", xf, ansf)
}
xf = -1.5
ansf = 0
if gglm.Clamp(xf, 0, 10) != ansf {
t.Errorf("Got: %v; Expected: %v", xf, ansf)
}
xf = 2
ansf = 1.5
if gglm.Clamp(xf, 0.5, 1.5) != ansf {
t.Errorf("Got: %v; Expected: %v", xf, ansf)
}
xf = 1.2
ansf = 1.2
if gglm.Clamp(xf, 0.5, 1.5) != ansf {
t.Errorf("Got: %v; Expected: %v", xf, ansf)
}
}

View File

@ -2,24 +2,64 @@ package gglm
type Swizzle1 interface {
X() float32
SetX(float32)
AddX(float32)
R() float32
SetR(float32)
AddR(float32)
}
type Swizzle2 interface {
Swizzle1
Y() float32
SetY(float32)
AddY(float32)
SetXY(float32, float32)
AddXY(float32, float32)
G() float32
SetG(float32)
AddG(float32)
SetRG(float32, float32)
AddRG(float32, float32)
}
type Swizzle3 interface {
Swizzle2
Z() float32
B() float32
// XYZ
// YXZ
// XZY
// YZX
// ZXY
// ZYX
Z() float32
SetZ(float32)
AddZ(float32)
SetXYZ(float32, float32, float32)
AddXYZ(float32, float32, float32)
B() float32
SetB(float32)
AddB(float32)
SetRGB(float32, float32, float32)
AddRGB(float32, float32, float32)
}
type Swizzle4 interface {
Swizzle3
W() float32
SetW(float32)
AddW(float32)
SetXYZW(float32, float32, float32, float32)
AddXYZW(float32, float32, float32, float32)
A() float32
SetA(float32)
AddA(float32)
SetRGBA(float32, float32, float32, float32)
AddRGBA(float32, float32, float32, float32)
}

344
gglm/transform.go Executable file
View File

@ -0,0 +1,344 @@
package gglm
import (
"fmt"
"math"
)
var _ Mat = &TrMat{}
var _ fmt.Stringer = &TrMat{}
// TrMat represents a transformation matrix
type TrMat struct {
Mat4
}
// TranslateVec adds v to the translation components of the transformation matrix
func (t *TrMat) TranslateVec(v *Vec3) *TrMat {
return t.Translate(v.X(), v.Y(), v.Z())
}
// Translate adds v to the translation components of the transformation matrix
func (t *TrMat) Translate(x, y, z float32) *TrMat {
t.Data[3][0] += x
t.Data[3][1] += y
t.Data[3][2] += z
return t
}
// ScaleVec multiplies the scale components of the transformation matrix by v
func (t *TrMat) ScaleVec(v *Vec3) *TrMat {
return t.Scale(v.X(), v.Y(), v.Z())
}
// Scale multiplies the scale components of the transformation matrix by v
func (t *TrMat) Scale(x, y, z float32) *TrMat {
t.Data[0][0] *= z
t.Data[1][1] *= y
t.Data[2][2] *= z
return t
}
// RotateVec takes a *normalized* axis and angles in radians to rotate around the given axis
func (t *TrMat) RotateVec(rads float32, axis *Vec3) *TrMat {
// Manually inlined
s := Sin32(rads)
c := Cos32(rads)
axis = axis.Normalize()
temp := axis.Clone().Scale(1 - c)
rotate := TrMat{}
rotate.Data[0][0] = c + temp.Data[0]*axis.Data[0]
rotate.Data[0][1] = temp.Data[0]*axis.Data[1] + s*axis.Data[2]
rotate.Data[0][2] = temp.Data[0]*axis.Data[2] - s*axis.Data[1]
rotate.Data[1][0] = temp.Data[1]*axis.Data[0] - s*axis.Data[2]
rotate.Data[1][1] = c + temp.Data[1]*axis.Data[1]
rotate.Data[1][2] = temp.Data[1]*axis.Data[2] + s*axis.Data[0]
rotate.Data[2][0] = temp.Data[2]*axis.Data[0] + s*axis.Data[1]
rotate.Data[2][1] = temp.Data[2]*axis.Data[1] - s*axis.Data[0]
rotate.Data[2][2] = c + temp.Data[2]*axis.Data[2]
result := Mat4{}
col0 := t.Col(0)
col1 := t.Col(1)
col2 := t.Col(2)
result.Data[0] = col0.Scale(rotate.Data[0][0]).
Add(col1.Scale(rotate.Data[0][1])).
Add(col2.Scale(rotate.Data[0][2])).
Data
col0 = t.Col(0)
col1 = t.Col(1)
col2 = t.Col(2)
result.Data[1] = col0.Scale(rotate.Data[1][0]).
Add(col1.Scale(rotate.Data[1][1])).
Add(col2.Scale(rotate.Data[1][2])).
Data
col0 = t.Col(0)
col1 = t.Col(1)
col2 = t.Col(2)
result.Data[2] = col0.Scale(rotate.Data[2][0]).
Add(col1.Scale(rotate.Data[2][1])).
Add(col2.Scale(rotate.Data[2][2])).
Data
t.Data[0] = result.Data[0]
t.Data[1] = result.Data[1]
t.Data[2] = result.Data[2]
return t
}
// Rotate takes a *normalized* axis and angles in radians to rotate around the given axis
func (t *TrMat) Rotate(rads float32, axisX, axisY, axisZ float32) *TrMat {
s := Sin32(rads)
c := Cos32(rads)
axis := NewVec3(axisX, axisY, axisZ)
axis.Normalize()
temp := axis.Clone().Scale(1 - c)
rotate := TrMat{}
rotate.Data[0][0] = c + temp.Data[0]*axis.Data[0]
rotate.Data[0][1] = temp.Data[0]*axis.Data[1] + s*axis.Data[2]
rotate.Data[0][2] = temp.Data[0]*axis.Data[2] - s*axis.Data[1]
rotate.Data[1][0] = temp.Data[1]*axis.Data[0] - s*axis.Data[2]
rotate.Data[1][1] = c + temp.Data[1]*axis.Data[1]
rotate.Data[1][2] = temp.Data[1]*axis.Data[2] + s*axis.Data[0]
rotate.Data[2][0] = temp.Data[2]*axis.Data[0] + s*axis.Data[1]
rotate.Data[2][1] = temp.Data[2]*axis.Data[1] - s*axis.Data[0]
rotate.Data[2][2] = c + temp.Data[2]*axis.Data[2]
result := Mat4{}
col0 := t.Col(0)
col1 := t.Col(1)
col2 := t.Col(2)
result.Data[0] = col0.Scale(rotate.Data[0][0]).
Add(col1.Scale(rotate.Data[0][1])).
Add(col2.Scale(rotate.Data[0][2])).
Data
col0 = t.Col(0)
col1 = t.Col(1)
col2 = t.Col(2)
result.Data[1] = col0.Scale(rotate.Data[1][0]).
Add(col1.Scale(rotate.Data[1][1])).
Add(col2.Scale(rotate.Data[1][2])).
Data
col0 = t.Col(0)
col1 = t.Col(1)
col2 = t.Col(2)
result.Data[2] = col0.Scale(rotate.Data[2][0]).
Add(col1.Scale(rotate.Data[2][1])).
Add(col2.Scale(rotate.Data[2][2])).
Data
t.Data[0] = result.Data[0]
t.Data[1] = result.Data[1]
t.Data[2] = result.Data[2]
return t
}
func (t *TrMat) Mul(m *TrMat) *TrMat {
t.Mat4.Mul(&m.Mat4)
return t
}
func (t *TrMat) Eq(m *TrMat) bool {
return t.Data == m.Data
}
func (t *TrMat) Clone() *TrMat {
return &TrMat{
Mat4: *t.Mat4.Clone(),
}
}
func NewTranslationMatVec(v *Vec3) TrMat {
return TrMat{
Mat4: Mat4{
Data: [4][4]float32{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{v.Data[0], v.Data[1], v.Data[2], 1},
},
},
}
}
func NewTranslationMat(posX, posY, posZ float32) TrMat {
return TrMat{
Mat4: Mat4{
Data: [4][4]float32{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{posX, posY, posZ, 1},
},
},
}
}
func NewScaleMatVec(v *Vec3) TrMat {
return TrMat{
Mat4: Mat4{
Data: [4][4]float32{
{v.Data[0], 0, 0, 0},
{0, v.Data[1], 0, 0},
{0, 0, v.Data[2], 0},
{0, 0, 0, 1},
},
},
}
}
func NewScaleMat(scaleX, scaleY, scaleZ float32) TrMat {
return TrMat{
Mat4: Mat4{
Data: [4][4]float32{
{scaleX, 0, 0, 0},
{0, scaleY, 0, 0},
{0, 0, scaleZ, 0},
{0, 0, 0, 1},
},
},
}
}
func NewRotMatQuat(q *Quat) TrMat {
//Based on: https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/softwareAndLearningMaterials/quaternion-tutorial-2-0-1.pdf
//Note: in the reference p0,p1,p2,p3 == w,x,y,z
xx := q.Data[0] * q.Data[0]
yy := q.Data[1] * q.Data[1]
zz := q.Data[2] * q.Data[2]
ww := q.Data[3] * q.Data[3]
xy := q.Data[0] * q.Data[1]
xz := q.Data[0] * q.Data[2]
xw := q.Data[0] * q.Data[3]
yz := q.Data[1] * q.Data[2]
yw := q.Data[1] * q.Data[3]
zw := q.Data[2] * q.Data[3]
return TrMat{
Mat4: Mat4{
Data: [4][4]float32{
{2*(ww+xx) - 1, 2 * (zw + xy), 2 * (xz - yw), 0},
{2 * (xy - zw), 2*(ww+yy) - 1, 2 * (xw + yz), 0},
{2 * (yw + xz), 2 * (yz - xw), 2*(ww+zz) - 1, 0},
{0, 0, 0, 1},
},
},
}
}
// LookAtRH does a right-handed coordinate system lookAt (RH is the default for OpenGL).
// Can be used to create the view matrix
func LookAtRH(pos, targetPos, worldUp *Vec3) TrMat {
forward := SubVec3(targetPos, pos)
forward.Normalize()
right := Cross(&forward, worldUp)
right.Normalize()
up := Cross(&right, &forward)
return TrMat{
Mat4: Mat4{
Data: [4][4]float32{
{right.Data[0], up.Data[0], -forward.Data[0], 0},
{right.Data[1], up.Data[1], -forward.Data[1], 0},
{right.Data[2], up.Data[2], -forward.Data[2], 0},
{-DotVec3(pos, &right), -DotVec3(pos, &up), DotVec3(pos, &forward), 1},
},
},
}
}
// LookAtLH does a left-handed coordinate system lookAt.
// Can be used to create the view matrix
func LookAtLH(pos, targetPos, worldUp *Vec3) TrMat {
forward := SubVec3(targetPos, pos)
forward.Normalize()
right := Cross(worldUp, &forward)
right.Normalize()
up := Cross(&forward, &right)
return TrMat{
Mat4: Mat4{
Data: [4][4]float32{
{right.Data[0], up.Data[0], forward.Data[0], 0},
{right.Data[1], up.Data[1], forward.Data[1], 0},
{right.Data[2], up.Data[2], forward.Data[2], 0},
{-DotVec3(pos, &right), -DotVec3(pos, &up), -DotVec3(pos, &forward), 1},
},
},
}
}
// Perspective creates a perspective projection matrix
func Perspective(fov, aspectRatio, nearClip, farClip float32) Mat4 {
halfFovTan := float32(math.Tan(float64(fov * 0.5)))
return Mat4{
Data: [4][4]float32{
{1 / (aspectRatio * halfFovTan), 0, 0, 0},
{0, 1 / halfFovTan, 0, 0},
{0, 0, -(nearClip + farClip) / (farClip - nearClip), -1},
{0, 0, -(2 * farClip * nearClip) / (farClip - nearClip), 0},
},
}
}
// Perspective creates an orthographic projection matrix
func Ortho(left, right, top, bottom, nearClip, farClip float32) TrMat {
return TrMat{
Mat4: Mat4{
Data: [4][4]float32{
{2 / (right - left), 0, 0, 0},
{0, 2 / (top - bottom), 0, 0},
{0, 0, -2 / (farClip - nearClip), 0},
{-(right + left) / (right - left), -(top + bottom) / (top - bottom), -(farClip + nearClip) / (farClip - nearClip), 1},
},
},
}
}
func NewTrMatId() TrMat {
return TrMat{
Mat4: NewMat4Id(),
}
}
func NewTrMatWithPos(x, y, z float32) TrMat {
tr := TrMat{
Mat4: NewMat4Id(),
}
tr.Translate(x, y, z)
return tr
}
func NewTrMatWithPosVec(pos *Vec3) TrMat {
tr := TrMat{
Mat4: NewMat4Id(),
}
tr.TranslateVec(pos)
return tr
}

84
gglm/transform_test.go Executable file
View File

@ -0,0 +1,84 @@
package gglm_test
import (
"testing"
"github.com/bloeys/gglm/gglm"
)
func TestNewTrMatId(t *testing.T) {
m := gglm.NewTrMatId()
ans := &gglm.TrMat{
Mat4: gglm.Mat4{
Data: [4][4]float32{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
},
},
}
if !m.Eq(ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
}
func TestNewTranslationMat(t *testing.T) {
m := gglm.NewTranslationMat(1, 2, 3)
ans := &gglm.TrMat{
Mat4: gglm.Mat4{
Data: [4][4]float32{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{1, 2, 3, 1},
},
},
}
if !m.Eq(ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
}
func TestNewScaleMat(t *testing.T) {
m := gglm.NewScaleMat(1, 2, 3)
ans := &gglm.TrMat{
Mat4: gglm.Mat4{
Data: [4][4]float32{
{1, 0, 0, 0},
{0, 2, 0, 0},
{0, 0, 3, 0},
{0, 0, 0, 1},
},
},
}
if !m.Eq(ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
}
func TestNewRotMat(t *testing.T) {
quat := gglm.NewQuatId()
m := gglm.NewRotMatQuat(&quat)
ans := &gglm.TrMat{
Mat4: gglm.Mat4{
Data: [4][4]float32{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
},
},
}
if !m.Eq(ans) {
t.Errorf("Got: %v; Expected: %v", m.String(), ans.String())
}
}

View File

@ -30,41 +30,129 @@ func (v *Vec2) G() float32 {
return v.Data[1]
}
func (v *Vec2) SetX(x float32) {
v.Data[0] = x
}
func (v *Vec2) SetR(r float32) {
v.Data[0] = r
}
func (v *Vec2) SetY(y float32) {
v.Data[1] = y
}
func (v *Vec2) SetG(g float32) {
v.Data[1] = g
}
func (v *Vec2) AddX(x float32) {
v.Data[0] += x
}
func (v *Vec2) AddY(y float32) {
v.Data[1] += y
}
func (v *Vec2) AddR(r float32) {
v.Data[0] += r
}
func (v *Vec2) AddG(g float32) {
v.Data[1] += g
}
func (v *Vec2) SetXY(x, y float32) {
v.Data[0] = x
v.Data[1] = y
}
func (v *Vec2) AddXY(x, y float32) {
v.Data[0] += x
v.Data[1] += y
}
func (v *Vec2) SetRG(r, g float32) {
v.Data[0] = r
v.Data[1] = g
}
func (v *Vec2) AddRG(r, g float32) {
v.Data[0] += r
v.Data[1] += g
}
func (v *Vec2) String() string {
return fmt.Sprintf("(%f, %f)", v.X(), v.Y())
}
//Scale v *= x (element wise multiplication)
func (v *Vec2) Scale(x float32) {
// Scale v *= x (element wise multiplication)
func (v *Vec2) Scale(x float32) *Vec2 {
v.Data[0] *= x
v.Data[1] *= x
return v
}
//Add v += v2
func (v *Vec2) Add(v2 *Vec2) {
// ScaleVec v *= v2 (element wise multiplication)
func (v *Vec2) ScaleVec(v2 *Vec2) *Vec2 {
v.Data[0] *= v2.X()
v.Data[1] *= v2.Y()
return v
}
// ScaleArr v *= arr (element wise multiplication)
func (v *Vec2) ScaleArr(arr [2]float32) *Vec2 {
v.Data[0] *= arr[0]
v.Data[1] *= arr[1]
return v
}
// Add v += v2
func (v *Vec2) Add(v2 *Vec2) *Vec2 {
v.Data[0] += v2.X()
v.Data[1] += v2.Y()
return v
}
//SubVec2 v -= v2
func (v *Vec2) Sub(v2 *Vec2) {
// SubVec2 v -= v2
func (v *Vec2) Sub(v2 *Vec2) *Vec2 {
v.Data[0] -= v2.X()
v.Data[1] -= v2.Y()
return v
}
//Mag returns the magnitude of the vector
// Mag returns the magnitude of the vector
func (v *Vec2) Mag() float32 {
return float32(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y())))
}
//Mag returns the squared magnitude of the vector
// Mag returns the squared magnitude of the vector
func (v *Vec2) SqrMag() float32 {
return v.X()*v.X() + v.Y()*v.Y()
}
//AddVec2 v3 = v1 + v2
func AddVec2(v1, v2 *Vec2) *Vec2 {
return &Vec2{
func (v *Vec2) Eq(v2 *Vec2) bool {
return v.Data == v2.Data
}
func (v *Vec2) Set(x, y float32) {
v.Data[0] = x
v.Data[1] = y
}
func (v *Vec2) Normalize() {
mag := v.Mag()
v.Data[0] /= mag
v.Data[1] /= mag
}
func (v *Vec2) Clone() *Vec2 {
return &Vec2{Data: v.Data}
}
// AddVec2 v3 = v1 + v2
func AddVec2(v1, v2 *Vec2) Vec2 {
return Vec2{
Data: [2]float32{
v1.X() + v2.X(),
v1.Y() + v2.Y(),
@ -72,12 +160,27 @@ func AddVec2(v1, v2 *Vec2) *Vec2 {
}
}
//SubVec2 v3 = v1 - v2
func SubVec2(v1, v2 *Vec2) *Vec2 {
return &Vec2{
// SubVec2 v3 = v1 - v2
func SubVec2(v1, v2 *Vec2) Vec2 {
return Vec2{
Data: [2]float32{
v1.X() - v2.X(),
v1.Y() - v2.Y(),
},
}
}
func NewVec2(x, y float32) Vec2 {
return Vec2{
[2]float32{
x,
y,
},
}
}
func NewVec2Arr(arr [2]float32) Vec2 {
return Vec2{
Data: arr,
}
}

View File

@ -36,44 +36,210 @@ func (v *Vec3) B() float32 {
return v.Data[2]
}
func (v *Vec3) SetX(f float32) {
v.Data[0] = f
}
func (v *Vec3) SetR(f float32) {
v.Data[0] = f
}
func (v *Vec3) SetY(f float32) {
v.Data[1] = f
}
func (v *Vec3) SetG(f float32) {
v.Data[1] = f
}
func (v *Vec3) SetZ(f float32) {
v.Data[2] = f
}
func (v *Vec3) SetB(f float32) {
v.Data[2] = f
}
func (v *Vec3) AddX(x float32) {
v.Data[0] += x
}
func (v *Vec3) AddY(y float32) {
v.Data[1] += y
}
func (v *Vec3) AddZ(z float32) {
v.Data[2] += z
}
func (v *Vec3) AddR(r float32) {
v.Data[0] += r
}
func (v *Vec3) AddG(g float32) {
v.Data[1] += g
}
func (v *Vec3) AddB(b float32) {
v.Data[2] += b
}
func (v *Vec3) SetXY(x, y float32) {
v.Data[0] = x
v.Data[1] = y
}
func (v *Vec3) AddXY(x, y float32) {
v.Data[0] += x
v.Data[1] += y
}
func (v *Vec3) SetRG(r, g float32) {
v.Data[0] = r
v.Data[1] = g
}
func (v *Vec3) AddRG(r, g float32) {
v.Data[0] += r
v.Data[1] += g
}
func (v *Vec3) SetXYZ(x, y, z float32) {
v.Data[0] = x
v.Data[1] = y
v.Data[2] = z
}
func (v *Vec3) AddXYZ(x, y, z float32) {
v.Data[0] += x
v.Data[1] += y
v.Data[2] += z
}
func (v *Vec3) SetRGB(r, g, b float32) {
v.Data[0] = r
v.Data[1] = g
v.Data[2] = b
}
func (v *Vec3) AddRGB(r, g, b float32) {
v.Data[0] += r
v.Data[1] += g
v.Data[2] += b
}
func (v *Vec3) String() string {
return fmt.Sprintf("(%f, %f, %f)", v.X(), v.Y(), v.Z())
}
//Scale v *= x (element wise multiplication)
func (v *Vec3) Scale(x float32) {
// Scale v *= x (element wise multiplication)
func (v *Vec3) Scale(x float32) *Vec3 {
v.Data[0] *= x
v.Data[1] *= x
v.Data[2] *= x
return v
}
func (v *Vec3) Add(v2 *Vec3) {
// ScaleVec v *= v2 (element wise multiplication)
func (v *Vec3) ScaleVec(v2 *Vec3) *Vec3 {
v.Data[0] *= v2.X()
v.Data[1] *= v2.Y()
v.Data[2] *= v2.Z()
return v
}
// ScaleArr v *= arr (element wise multiplication)
func (v *Vec3) ScaleArr(arr [3]float32) *Vec3 {
v.Data[0] *= arr[0]
v.Data[1] *= arr[1]
v.Data[2] *= arr[2]
return v
}
func (v *Vec3) Add(v2 *Vec3) *Vec3 {
v.Data[0] += v2.X()
v.Data[1] += v2.Y()
v.Data[2] += v2.Z()
return v
}
//SubVec3 v -= v2
func (v *Vec3) Sub(v2 *Vec3) {
// SubVec3 v -= v2
func (v *Vec3) Sub(v2 *Vec3) *Vec3 {
v.Data[0] -= v2.X()
v.Data[1] -= v2.Y()
v.Data[2] -= v2.Z()
return v
}
//Mag returns the magnitude of the vector
// Mag returns the magnitude of the vector
func (v *Vec3) Mag() float32 {
return float32(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z())))
}
//Mag returns the squared magnitude of the vector
// Mag returns the squared magnitude of the vector
func (v *Vec3) SqrMag() float32 {
return v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z()
}
//AddVec3 v3 = v1 + v2
func AddVec3(v1, v2 *Vec3) *Vec3 {
func (v *Vec3) Eq(v2 *Vec3) bool {
return v.Data == v2.Data
}
func (v *Vec3) Set(x, y, z float32) {
v.Data[0] = x
v.Data[1] = y
v.Data[2] = z
}
// Normalize normalizes this vector and returns it (doesn't copy)
func (v *Vec3) Normalize() *Vec3 {
mag := float32(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z())))
v.Data[0] /= mag
v.Data[1] /= mag
v.Data[2] /= mag
return v
}
// RotByQuat rotates this vector by the given quaternion
func (v *Vec3) RotByQuat(q *Quat) *Vec3 {
// Reference: https://gamedev.stackexchange.com/questions/28395/rotating-vector3-by-a-quaternion
// u := NewVec3(q.X(), q.Y(), q.Z())
// t1 := 2.0f * dot(u, v) * u
// t2 := (s*s - dot(u, u)) * v
// t3 := 2.0f * s * cross(u, v);
// vprime = t1 + t2 + t3
u := NewVec3(q.X(), q.Y(), q.Z())
t1 := u.Clone().Scale(2 * DotVec3(&u, v))
t2 := v.Clone().Scale(q.W()*q.W() - DotVec3(&u, &u))
t3 := Cross(&u, v)
t3.Scale(2 * q.W())
v.Data = t1.Add(t2).Add(&t3).Data
return v
}
func (v *Vec3) Clone() *Vec3 {
return &Vec3{Data: v.Data}
}
// AsRad returns a new vector with all values converted to Radians (i.e. multiplied by gglm.Deg2Rad)
func (v *Vec3) AsRad() *Vec3 {
return &Vec3{
Data: [3]float32{
v.Data[0] * Deg2Rad,
v.Data[1] * Deg2Rad,
v.Data[2] * Deg2Rad,
},
}
}
// AddVec3 v3 = v1 + v2
func AddVec3(v1, v2 *Vec3) Vec3 {
return Vec3{
Data: [3]float32{
v1.X() + v2.X(),
v1.Y() + v2.Y(),
@ -82,9 +248,9 @@ func AddVec3(v1, v2 *Vec3) *Vec3 {
}
}
//SubVec3 v3 = v1 - v2
func SubVec3(v1, v2 *Vec3) *Vec3 {
return &Vec3{
// SubVec3 v3 = v1 - v2
func SubVec3(v1, v2 *Vec3) Vec3 {
return Vec3{
Data: [3]float32{
v1.X() - v2.X(),
v1.Y() - v2.Y(),
@ -92,3 +258,19 @@ func SubVec3(v1, v2 *Vec3) *Vec3 {
},
}
}
func NewVec3(x, y, z float32) Vec3 {
return Vec3{
[3]float32{
x,
y,
z,
},
}
}
func NewVec3Arr(arr [3]float32) Vec3 {
return Vec3{
Data: arr,
}
}

303
gglm/vec4.go Executable file
View File

@ -0,0 +1,303 @@
package gglm
import (
"fmt"
"math"
)
var _ Swizzle4 = &Vec4{}
var _ fmt.Stringer = &Vec4{}
type Vec4 struct {
Data [4]float32
}
func (v *Vec4) X() float32 {
return v.Data[0]
}
func (v *Vec4) Y() float32 {
return v.Data[1]
}
func (v *Vec4) Z() float32 {
return v.Data[2]
}
func (v *Vec4) W() float32 {
return v.Data[3]
}
func (v *Vec4) R() float32 {
return v.Data[0]
}
func (v *Vec4) G() float32 {
return v.Data[1]
}
func (v *Vec4) B() float32 {
return v.Data[2]
}
func (v *Vec4) A() float32 {
return v.Data[3]
}
func (v *Vec4) SetX(f float32) {
v.Data[0] = f
}
func (v *Vec4) SetR(f float32) {
v.Data[0] = f
}
func (v *Vec4) SetY(f float32) {
v.Data[1] = f
}
func (v *Vec4) SetG(f float32) {
v.Data[1] = f
}
func (v *Vec4) SetZ(f float32) {
v.Data[2] = f
}
func (v *Vec4) SetB(f float32) {
v.Data[2] = f
}
func (v *Vec4) SetW(f float32) {
v.Data[3] = f
}
func (v *Vec4) SetA(f float32) {
v.Data[3] = f
}
func (v *Vec4) AddX(x float32) {
v.Data[0] += x
}
func (v *Vec4) AddY(y float32) {
v.Data[1] += y
}
func (v *Vec4) AddZ(z float32) {
v.Data[2] += z
}
func (v *Vec4) AddW(w float32) {
v.Data[3] += w
}
func (v *Vec4) AddR(r float32) {
v.Data[0] += r
}
func (v *Vec4) AddG(g float32) {
v.Data[1] += g
}
func (v *Vec4) AddB(b float32) {
v.Data[2] += b
}
func (v *Vec4) AddA(a float32) {
v.Data[3] += a
}
func (v *Vec4) SetXY(x, y float32) {
v.Data[0] = x
v.Data[1] = y
}
func (v *Vec4) AddXY(x, y float32) {
v.Data[0] += x
v.Data[1] += y
}
func (v *Vec4) SetRG(r, g float32) {
v.Data[0] = r
v.Data[1] = g
}
func (v *Vec4) AddRG(r, g float32) {
v.Data[0] += r
v.Data[1] += g
}
func (v *Vec4) SetXYZ(x, y, z float32) {
v.Data[0] = x
v.Data[1] = y
v.Data[2] = z
}
func (v *Vec4) AddXYZ(x, y, z float32) {
v.Data[0] += x
v.Data[1] += y
v.Data[2] += z
}
func (v *Vec4) SetRGB(r, g, b float32) {
v.Data[0] = r
v.Data[1] = g
v.Data[2] = b
}
func (v *Vec4) AddRGB(r, g, b float32) {
v.Data[0] += r
v.Data[1] += g
v.Data[2] += b
}
func (v *Vec4) SetXYZW(x, y, z, w float32) {
v.Data[0] = x
v.Data[1] = y
v.Data[2] = z
v.Data[3] = w
}
func (v *Vec4) AddXYZW(x, y, z, w float32) {
v.Data[0] += x
v.Data[1] += y
v.Data[2] += z
v.Data[3] += w
}
func (v *Vec4) SetRGBA(r, g, b, a float32) {
v.Data[0] = r
v.Data[1] = g
v.Data[2] = b
v.Data[3] = a
}
func (v *Vec4) AddRGBA(r, g, b, a float32) {
v.Data[0] += r
v.Data[1] += g
v.Data[2] += b
v.Data[3] += a
}
func (v *Vec4) String() string {
return fmt.Sprintf("(%f, %f, %f, %f)", v.X(), v.Y(), v.Z(), v.W())
}
// Scale v *= x (element wise multiplication)
func (v *Vec4) Scale(x float32) *Vec4 {
v.Data[0] *= x
v.Data[1] *= x
v.Data[2] *= x
v.Data[3] *= x
return v
}
// ScaleVec v *= v2 (element wise multiplication)
func (v *Vec4) ScaleVec(v2 *Vec4) *Vec4 {
v.Data[0] *= v2.X()
v.Data[1] *= v2.Y()
v.Data[2] *= v2.Z()
v.Data[3] *= v2.W()
return v
}
// ScaleArr v *= arr (element wise multiplication)
func (v *Vec4) ScaleArr(arr [4]float32) *Vec4 {
v.Data[0] *= arr[0]
v.Data[1] *= arr[1]
v.Data[2] *= arr[2]
v.Data[3] *= arr[3]
return v
}
func (v *Vec4) Add(v2 *Vec4) *Vec4 {
v.Data[0] += v2.X()
v.Data[1] += v2.Y()
v.Data[2] += v2.Z()
v.Data[3] += v2.W()
return v
}
// SubVec4 v -= v2
func (v *Vec4) Sub(v2 *Vec4) *Vec4 {
v.Data[0] -= v2.X()
v.Data[1] -= v2.Y()
v.Data[2] -= v2.Z()
v.Data[3] -= v2.W()
return v
}
// Mag returns the magnitude of the vector
func (v *Vec4) Mag() float32 {
return float32(math.Sqrt(float64(v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z() + v.W()*v.W())))
}
// Mag returns the squared magnitude of the vector
func (v *Vec4) SqrMag() float32 {
return v.X()*v.X() + v.Y()*v.Y() + v.Z()*v.Z() + v.Z()*v.Z()
}
func (v *Vec4) Eq(v2 *Vec4) bool {
return v.Data == v2.Data
}
func (v *Vec4) Set(x, y, z, w float32) {
v.Data[0] = x
v.Data[1] = y
v.Data[2] = z
v.Data[3] = w
}
func (v *Vec4) Normalize() {
mag := float32(math.Sqrt(float64(v.Data[0]*v.Data[0] + v.Data[1]*v.Data[1] + v.Data[2]*v.Data[2] + v.Data[3]*v.Data[3])))
v.Data[0] /= mag
v.Data[1] /= mag
v.Data[2] /= mag
v.Data[3] /= mag
}
func (v *Vec4) Clone() *Vec4 {
return &Vec4{Data: v.Data}
}
// AddVec4 v3 = v1 + v2
func AddVec4(v1, v2 *Vec4) Vec4 {
return Vec4{
Data: [4]float32{
v1.X() + v2.X(),
v1.Y() + v2.Y(),
v1.Z() + v2.Z(),
v1.W() + v2.W(),
},
}
}
// SubVec4 v3 = v1 - v2
func SubVec4(v1, v2 *Vec4) Vec4 {
return Vec4{
Data: [4]float32{
v1.X() - v2.X(),
v1.Y() - v2.Y(),
v1.Z() - v2.Z(),
v1.W() - v2.W(),
},
}
}
func NewVec4(x, y, z, w float32) Vec4 {
return Vec4{
[4]float32{
x,
y,
z,
w,
},
}
}
func NewVec4Arr(arr [4]float32) Vec4 {
return Vec4{
Data: arr,
}
}

425
gglm/vec_test.go Executable file
View File

@ -0,0 +1,425 @@
package gglm_test
import (
"testing"
"github.com/bloeys/gglm/gglm"
)
func TestVecSwizzleGet(t *testing.T) {
//Vec2
v2 := gglm.NewVec2(1, 2)
var ans2X float32 = 1
var ans2Y float32 = 2
if v2.X() != ans2X {
t.Errorf("Got: %v; Expected: %v", v2.X(), ans2X)
}
if v2.Y() != ans2Y {
t.Errorf("Got: %v; Expected: %v", v2.Y(), ans2Y)
}
if v2.R() != ans2X {
t.Errorf("Got: %v; Expected: %v", v2.R(), ans2X)
}
if v2.G() != ans2Y {
t.Errorf("Got: %v; Expected: %v", v2.G(), ans2Y)
}
//Vec3
v3 := gglm.NewVec3(1, 2, 3)
var ans3X float32 = 1
var ans3Y float32 = 2
var ans3Z float32 = 3
if v3.X() != ans3X {
t.Errorf("Got: %v; Expected: %v", v3.X(), ans3X)
}
if v3.Y() != ans3Y {
t.Errorf("Got: %v; Expected: %v", v3.Y(), ans3Y)
}
if v3.Z() != ans3Z {
t.Errorf("Got: %v; Expected: %v", v3.Z(), ans3Z)
}
if v3.R() != ans3X {
t.Errorf("Got: %v; Expected: %v", v3.R(), ans3X)
}
if v3.G() != ans3Y {
t.Errorf("Got: %v; Expected: %v", v3.G(), ans3Y)
}
if v3.B() != ans3Z {
t.Errorf("Got: %v; Expected: %v", v3.B(), ans3Z)
}
//Vec4
v4 := gglm.NewVec4(1, 2, 3, 4)
var ans4X float32 = 1
var ans4Y float32 = 2
var ans4Z float32 = 3
var ans4W float32 = 4
if v4.X() != ans4X {
t.Errorf("Got: %v; Expected: %v", v4.X(), ans4X)
}
if v4.Y() != ans4Y {
t.Errorf("Got: %v; Expected: %v", v4.Y(), ans4Y)
}
if v4.Z() != ans4Z {
t.Errorf("Got: %v; Expected: %v", v4.Z(), ans4Z)
}
if v4.W() != ans4W {
t.Errorf("Got: %v; Expected: %v", v4.W(), ans4W)
}
if v4.R() != ans4X {
t.Errorf("Got: %v; Expected: %v", v4.R(), ans4X)
}
if v4.G() != ans4Y {
t.Errorf("Got: %v; Expected: %v", v4.G(), ans4Y)
}
if v4.B() != ans4Z {
t.Errorf("Got: %v; Expected: %v", v4.B(), ans4Z)
}
if v4.A() != ans4W {
t.Errorf("Got: %v; Expected: %v", v4.A(), ans4W)
}
}
func TestVecSwizzleSet(t *testing.T) {
//Vec2
v2 := gglm.NewVec2(1, 1)
ans2 := gglm.NewVec2(1, 2)
v2.SetX(1)
v2.SetY(2)
if !v2.Eq(&ans2) {
t.Errorf("Got: %v; Expected: %v", v2.String(), ans2.String())
}
v2 = gglm.NewVec2(1, 1)
ans2 = gglm.NewVec2(11, 22)
v2.SetR(11)
v2.SetG(22)
if !v2.Eq(&ans2) {
t.Errorf("Got: %v; Expected: %v", v2.String(), ans2.String())
}
v2 = gglm.NewVec2(1, 1)
ans2 = gglm.NewVec2(1, 2)
v2.SetXY(1, 2)
if !v2.Eq(&ans2) {
t.Errorf("Got: %v; Expected: %v", v2.String(), ans2.String())
}
v2 = gglm.NewVec2(1, 1)
ans2 = gglm.NewVec2(11, 22)
v2.SetRG(11, 22)
if !v2.Eq(&ans2) {
t.Errorf("Got: %v; Expected: %v", v2.String(), ans2.String())
}
//Vec3
v3 := gglm.NewVec3(1, 1, 1)
ans3 := gglm.NewVec3(1, 2, 3)
v3.SetX(1)
v3.SetY(2)
v3.SetZ(3)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
v3 = gglm.NewVec3(1, 1, 1)
ans3 = gglm.NewVec3(11, 22, 33)
v3.SetR(11)
v3.SetG(22)
v3.SetB(33)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
v3 = gglm.NewVec3(1, 1, 1)
ans3 = gglm.NewVec3(1, 2, 1)
v3.SetXY(1, 2)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
v3 = gglm.NewVec3(1, 1, 1)
ans3 = gglm.NewVec3(1, 2, 1)
v3.SetRG(1, 2)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
v3 = gglm.NewVec3(1, 1, 1)
ans3 = gglm.NewVec3(1, 2, 3)
v3.SetXYZ(1, 2, 3)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
v3 = gglm.NewVec3(1, 1, 1)
ans3 = gglm.NewVec3(1, 2, 3)
v3.SetRGB(1, 2, 3)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
// Test AngleVec3
v3 = gglm.NewVec3(1, 0, 0)
v32 := gglm.NewVec3(1, 0, 0)
angleV3 := gglm.AngleVec3(&v3, &v32) * gglm.Rad2Deg
if angleV3 != 0 {
t.Errorf("Got: %v; Expected: %v", v3.String(), 0)
}
v32.SetXY(0, 1)
angleV3 = gglm.AngleVec3(&v3, &v32) * gglm.Rad2Deg
if angleV3 != 90 {
t.Errorf("Got: %v; Expected: %v", v3.String(), 0)
}
// Test rot by quat
v32.SetXY(1, 0)
rotAxis := gglm.NewVec3(0, 1, 0)
quat := gglm.NewQuatAngleAxisVec(90*gglm.Deg2Rad, &rotAxis)
v32.RotByQuat(&quat)
angleV3 = gglm.AngleVec3(&v3, &v32) * gglm.Rad2Deg
if angleV3 != 90 {
t.Errorf("Got: %v; Expected: %v", v3.String(), 0)
}
//Vec4
v4 := gglm.NewVec4(1, 1, 1, 1)
ans4 := gglm.NewVec4(1, 2, 3, 4)
v4.SetX(1)
v4.SetY(2)
v4.SetZ(3)
v4.SetW(4)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
ans4 = gglm.NewVec4(11, 22, 33, 44)
v4.SetR(11)
v4.SetG(22)
v4.SetB(33)
v4.SetA(44)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
ans4 = gglm.NewVec4(1, 2, 1, 1)
v4.SetXY(1, 2)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
ans4 = gglm.NewVec4(1, 2, 1, 1)
v4.SetRG(1, 2)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
ans4 = gglm.NewVec4(1, 2, 3, 1)
v4.SetXYZ(1, 2, 3)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
ans4 = gglm.NewVec4(1, 2, 3, 1)
v4.SetRGB(1, 2, 3)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
ans4 = gglm.NewVec4(1, 2, 3, 4)
v4.SetXYZW(1, 2, 3, 4)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
ans4 = gglm.NewVec4(1, 2, 3, 4)
v4.SetRGBA(1, 2, 3, 4)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
}
func TestVecSwizzleAdd(t *testing.T) {
//Vec2
v2 := gglm.NewVec2(1, 1)
ans2 := gglm.NewVec2(2, 3)
v2.AddX(1)
v2.AddY(2)
if !v2.Eq(&ans2) {
t.Errorf("Got: %v; Expected: %v", v2.String(), ans2.String())
}
v2 = gglm.NewVec2(1, 1)
v2.AddR(1)
v2.AddG(2)
if !v2.Eq(&ans2) {
t.Errorf("Got: %v; Expected: %v", v2.String(), ans2.String())
}
v2 = gglm.NewVec2(1, 1)
v2.AddXY(1, 2)
if !v2.Eq(&ans2) {
t.Errorf("Got: %v; Expected: %v", v2.String(), ans2.String())
}
v2 = gglm.NewVec2(1, 1)
v2.AddRG(1, 2)
if !v2.Eq(&ans2) {
t.Errorf("Got: %v; Expected: %v", v2.String(), ans2.String())
}
//Vec3
v3 := gglm.NewVec3(1, 1, 1)
ans3 := gglm.NewVec3(2, 3, 4)
v3.AddX(1)
v3.AddY(2)
v3.AddZ(3)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
v3 = gglm.NewVec3(1, 1, 1)
v3.AddR(1)
v3.AddG(2)
v3.AddB(3)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
v3 = gglm.NewVec3(1, 1, 1)
ans3 = gglm.NewVec3(2, 3, 1)
v3.AddXY(1, 2)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
v3 = gglm.NewVec3(1, 1, 1)
v3.AddRG(1, 2)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
v3 = gglm.NewVec3(1, 1, 1)
ans3 = gglm.NewVec3(2, 3, 4)
v3.AddXYZ(1, 2, 3)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
v3 = gglm.NewVec3(1, 1, 1)
v3.AddRGB(1, 2, 3)
if !v3.Eq(&ans3) {
t.Errorf("Got: %v; Expected: %v", v3.String(), ans3.String())
}
//Vec4
v4 := gglm.NewVec4(1, 1, 1, 1)
ans4 := gglm.NewVec4(2, 3, 4, 5)
v4.AddX(1)
v4.AddY(2)
v4.AddZ(3)
v4.AddW(4)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
v4.AddR(1)
v4.AddG(2)
v4.AddB(3)
v4.AddA(4)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
ans4 = gglm.NewVec4(2, 3, 1, 1)
v4.AddXY(1, 2)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
v4.AddRG(1, 2)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
ans4 = gglm.NewVec4(2, 3, 4, 1)
v4.AddXYZ(1, 2, 3)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
v4.AddRGB(1, 2, 3)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
ans4 = gglm.NewVec4(2, 3, 4, 5)
v4.AddXYZW(1, 2, 3, 4)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
v4 = gglm.NewVec4(1, 1, 1, 1)
v4.AddRGBA(1, 2, 3, 4)
if !v4.Eq(&ans4) {
t.Errorf("Got: %v; Expected: %v", v4.String(), ans4.String())
}
}

4
go.mod
View File

@ -1,3 +1,5 @@
module github.com/bloeys/gglm
go 1.17
go 1.18
require golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842

2
go.sum
View File

@ -0,0 +1,2 @@
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842 h1:vr/HnozRka3pE4EsMEg1lgkXJkTFJCVUX+S/ZT6wYzM=
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842/go.mod h1:XtvwrStGgqGPLc4cjQfWqZHG1YFdYs6swckp8vpsjnc=

222
main.go
View File

@ -1,29 +1,217 @@
package main
import (
"fmt"
"github.com/bloeys/gglm/gglm"
)
func main() {
// v1 := gglm.NewVec2([]float32{4, 5})
// v2 := gglm.NewVec2([]float32{1, 1})
// println(v1.Mag())
// println(v1.SqrMag())
// v1 := gglm.NewVec2(nil)
// v2 := gglm.NewVec2(nil)
// v1.Add(v2)
m1 := &gglm.Mat4{}
m2 := &gglm.Mat4{
Data: [16]float32{
-10, 0, 100, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
// Mat3
m1 := &gglm.Mat3{
Data: [3][3]float32{
{1, 4, 7},
{2, 5, 8},
{3, 6, 9},
},
}
m3 := gglm.AddMat4(m1, m2)
m2.Add(m3)
m2 := &gglm.Mat3{
Data: [3][3]float32{
{1, 1, 1},
{2, 2, 2},
{3, 3, 3},
},
}
m3 := gglm.MulMat3(m1, m2)
m1.Mul(m2)
println(m1.String())
println(m3.String())
// Mat4
m4 := &gglm.Mat4{
Data: [4][4]float32{
{1, 5, 9, 13},
{2, 6, 10, 14},
{3, 7, 11, 15},
{4, 8, 12, 16},
},
}
m5 := &gglm.Mat4{
Data: [4][4]float32{
{1, 2, 3, 4},
{1, 2, 3, 4},
{1, 2, 3, 4},
{1, 2, 3, 4},
},
}
m6 := gglm.MulMat4(m4, m5)
m4.Mul(m5)
println(m4.String())
println(m6.String())
println(m4.Eq(&m6))
// Vec2
v1 := &gglm.Vec2{Data: [2]float32{1, 2}}
v2 := &gglm.Vec2{Data: [2]float32{3, 4}}
println(gglm.DistVec2(v1, v2))
println(gglm.SqrDistVec2(v2, v1))
println(v1.Eq(v2))
v2.Set(1, 2)
println(v1.Eq(v2))
v1.AddXY(v2.X(), v2.Y())
println(v1.String())
println("V1: " + v1.String())
v1.Normalize()
println("V1 Normal: " + v1.String())
// Vec3
v3 := &gglm.Vec3{Data: [3]float32{1, 2, 3}}
v4 := &gglm.Vec3{Data: [3]float32{4, 5, 6}}
println(gglm.DistVec3(v3, v4))
println(gglm.SqrDistVec3(v4, v3))
println(v3.Eq(v4))
v4.Set(1, 2, 3)
println(v3.Eq(v4))
println(gglm.DotVec3(v3, v4))
v3v4Cross := gglm.Cross(v3, v4)
println(v3v4Cross.String())
println("V3: " + v3.String())
v3.Normalize()
println("V3 Normal: " + v3.String())
// Vec4
v5 := &gglm.Vec4{Data: [4]float32{1, 2, 3, 4}}
v6 := &gglm.Vec4{Data: [4]float32{5, 6, 7, 8}}
println(gglm.DistVec4(v5, v6))
println(gglm.SqrDistVec4(v5, v6))
println(v5.Eq(v6))
v6.Set(1, 2, 3, 4)
println(v5.Eq(v6))
println(gglm.DotVec4(v5, v6))
v5.Add(v6)
v5.AddXYZW(v6.X(), v6.Y(), v6.Z(), v6.W())
println(v6.String())
println("V6: " + v6.String())
v6.Normalize()
println("V6 Normal: " + v6.String())
// Mat2Vec2
mat2A := gglm.Mat2{
Data: [2][2]float32{
{1, 3},
{2, 4},
},
}
vec2A := gglm.Vec2{Data: [2]float32{1, 2}}
mat2Vec2Mul := gglm.MulMat2Vec2(&mat2A, &vec2A)
println(mat2Vec2Mul.String())
// Mat3Vec3
mat3A := gglm.Mat3{
Data: [3][3]float32{
{1, 4, 7},
{2, 5, 8},
{3, 6, 9},
},
}
vec3A := gglm.Vec3{Data: [3]float32{1, 2, 3}}
mm3v3 := gglm.MulMat3Vec3(&mat3A, &vec3A)
println(mm3v3.String())
// ReflectVec2
vec2B := &gglm.Vec2{Data: [2]float32{4, 5}}
normA := &gglm.Vec2{Data: [2]float32{0, 1}}
rVec2A := gglm.ReflectVec2(vec2B, normA)
println(rVec2A.String())
// Quaternion
vRot := &gglm.Vec3{Data: [3]float32{60, 30, 20}}
q := gglm.NewQuatEulerVec(vRot.AsRad())
println("\n" + vRot.AsRad().String())
println(q.String(), "\n", q.Mag())
q = gglm.NewQuatAngleAxisVec(60*gglm.Deg2Rad, vRot.Normalize())
println("\n" + vRot.Normalize().String())
println(q.String())
// Transform
translationMat := gglm.NewTranslationMatVec(&gglm.Vec3{Data: [3]float32{1, 2, 3}})
rotDegs := gglm.NewVec3(60, 30, 20)
quat := gglm.NewQuatEulerVec(rotDegs.AsRad())
rotMat := gglm.NewRotMatQuat(&quat)
scaleMat := gglm.NewScaleMat(1, 1, 1)
modelMat := gglm.NewTrMatId()
modelMat.Mul(translationMat.Mul(rotMat.Mul(&scaleMat)))
println("\n\n\n", modelMat.String())
// Clone Vec2
v2Orig := gglm.Vec2{Data: [2]float32{1, 2}}
v2Clone := v2Orig.Clone()
v2Clone.SetX(99)
println("\n\n", v2Orig.String(), "; ", v2Clone.String())
// Clone TrMat
trMatOrig := gglm.NewTranslationMat(1, 2, 3)
trMatClone := trMatOrig.Clone()
trMatCloneScale := gglm.NewVec3(2, 2, 2)
trMatClone.ScaleVec(&trMatCloneScale)
trMatClone.Translate(9, 0, 0)
println("\n\n", trMatOrig.String(), "; ", trMatClone.String())
// Quat geo
q1Degs := gglm.NewVec3(180*gglm.Deg2Rad, 0, 0)
q1 := gglm.NewQuatEulerVec(&q1Degs)
q2Degs := gglm.NewVec3(0, 180*gglm.Deg2Rad, 0)
q2 := gglm.NewQuatEulerVec(&q2Degs)
println(gglm.AngleQuat(&q1, &q2) * gglm.Rad2Deg)
// LookAt
camPos := gglm.NewVec3(0, 0, 3)
worldUp := gglm.NewVec3(0, 1, 0)
targetPos := gglm.NewVec3(0, 0, 0)
viewMat := gglm.LookAtRH(&camPos, &targetPos, &worldUp)
println(viewMat.String())
// Mat2Col
mc := gglm.NewMat2Id()
println("===============================")
println(mc.String())
mc.Data = [2][2]float32{
{1, 3},
{2, 4},
}
println(mc.String())
fmt.Printf("Arr: %v", mc.Data)
mc2 := gglm.Mat2{Data: [2][2]float32{
{1, 3},
{2, 4},
}}
println(mc2.Mul(&mc).String())
}

View File

@ -1,27 +0,0 @@
package main
import (
"testing"
"github.com/bloeys/gglm/gglm"
)
func BenchmarkVec3Add(b *testing.B) {
v1 := gglm.NewMat4Id()
v2 := gglm.NewMat4Id()
for i := 0; i < b.N; i++ {
gglm.AddMat4(v1, v2)
}
}
func BenchmarkVec3Add2(b *testing.B) {
v1 := gglm.NewMat4Id()
v2 := gglm.NewMat4Id()
for i := 0; i < b.N; i++ {
v1.Add(v2)
}
}