mirror of
https://github.com/bloeys/nmage.git
synced 2025-12-29 13:28:20 +00:00
Compare commits
11 Commits
v0.26.1
...
f2b757c606
| Author | SHA1 | Date | |
|---|---|---|---|
| f2b757c606 | |||
| 3be4ad9c45 | |||
| bbc8652292 | |||
| 0d34e0fe6e | |||
| 870653019c | |||
| 79cb6805c4 | |||
| ff7fe4e531 | |||
| cb20e8ba8b | |||
| 9e6fdacb48 | |||
| f13db47918 | |||
| dcfe254052 |
@ -1,23 +1,23 @@
|
||||
package buffers
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/bloeys/nmage/assert"
|
||||
"github.com/bloeys/nmage/logging"
|
||||
"github.com/go-gl/gl/v4.1-core/gl"
|
||||
)
|
||||
|
||||
//Element represents an element that makes up a buffer (e.g. Vec3 at an offset of 12 bytes)
|
||||
// Element represents an element that makes up a buffer (e.g. Vec3 at an offset of 12 bytes)
|
||||
type Element struct {
|
||||
Offset int
|
||||
ElementType
|
||||
}
|
||||
|
||||
//ElementType is the type of an element thats makes up a buffer (e.g. Vec3)
|
||||
type ElementType int
|
||||
// ElementType is the type of an element thats makes up a buffer (e.g. Vec3)
|
||||
type ElementType uint8
|
||||
|
||||
const (
|
||||
DataTypeUnknown ElementType = iota
|
||||
|
||||
DataTypeUint32
|
||||
DataTypeInt32
|
||||
DataTypeFloat32
|
||||
@ -25,35 +25,54 @@ const (
|
||||
DataTypeVec2
|
||||
DataTypeVec3
|
||||
DataTypeVec4
|
||||
|
||||
DataTypeMat2
|
||||
DataTypeMat3
|
||||
DataTypeMat4
|
||||
|
||||
DataTypeStruct
|
||||
)
|
||||
|
||||
func (dt ElementType) GLType() uint32 {
|
||||
|
||||
switch dt {
|
||||
|
||||
case DataTypeUint32:
|
||||
return gl.UNSIGNED_INT
|
||||
case DataTypeInt32:
|
||||
return gl.INT
|
||||
|
||||
case DataTypeFloat32:
|
||||
fallthrough
|
||||
|
||||
case DataTypeVec2:
|
||||
fallthrough
|
||||
case DataTypeVec3:
|
||||
fallthrough
|
||||
case DataTypeVec4:
|
||||
fallthrough
|
||||
case DataTypeMat2:
|
||||
fallthrough
|
||||
case DataTypeMat3:
|
||||
fallthrough
|
||||
case DataTypeMat4:
|
||||
return gl.FLOAT
|
||||
|
||||
case DataTypeStruct:
|
||||
logging.ErrLog.Fatalf("ElementType.GLType of DataTypeStruct is not supported")
|
||||
return 0
|
||||
|
||||
default:
|
||||
assert.T(false, fmt.Sprintf("Unknown data type passed. DataType '%v'", dt))
|
||||
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
//CompSize returns the size in bytes for one component of the type (e.g. for Vec2 its 4)
|
||||
// CompSize returns the size in bytes for one component of the type (e.g. for Vec2 its 4).
|
||||
// Bools return 1, although in layout=std140 its 4
|
||||
func (dt ElementType) CompSize() int32 {
|
||||
|
||||
switch dt {
|
||||
|
||||
case DataTypeUint32:
|
||||
fallthrough
|
||||
case DataTypeFloat32:
|
||||
@ -65,15 +84,25 @@ func (dt ElementType) CompSize() int32 {
|
||||
case DataTypeVec3:
|
||||
fallthrough
|
||||
case DataTypeVec4:
|
||||
fallthrough
|
||||
case DataTypeMat2:
|
||||
fallthrough
|
||||
case DataTypeMat3:
|
||||
fallthrough
|
||||
case DataTypeMat4:
|
||||
return 4
|
||||
|
||||
case DataTypeStruct:
|
||||
logging.ErrLog.Fatalf("ElementType.CompSize of DataTypeStruct is not supported")
|
||||
return 0
|
||||
|
||||
default:
|
||||
assert.T(false, fmt.Sprintf("Unknown data type passed. DataType '%v'", dt))
|
||||
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
//CompCount returns the number of components in the element (e.g. for Vec2 its 2)
|
||||
// CompCount returns the number of components in the element (e.g. for Vec2 its 2)
|
||||
func (dt ElementType) CompCount() int32 {
|
||||
|
||||
switch dt {
|
||||
@ -91,16 +120,28 @@ func (dt ElementType) CompCount() int32 {
|
||||
case DataTypeVec4:
|
||||
return 4
|
||||
|
||||
case DataTypeMat2:
|
||||
return 2 * 2
|
||||
case DataTypeMat3:
|
||||
return 3 * 3
|
||||
case DataTypeMat4:
|
||||
return 4 * 4
|
||||
|
||||
case DataTypeStruct:
|
||||
logging.ErrLog.Fatalf("ElementType.CompCount of DataTypeStruct is not supported")
|
||||
return 0
|
||||
|
||||
default:
|
||||
assert.T(false, fmt.Sprintf("Unknown data type passed. DataType '%v'", dt))
|
||||
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
//Size returns the total size in bytes (e.g. for vec3 its 3*4=12 bytes)
|
||||
// Size returns the total size in bytes (e.g. for vec3 its 3*4=12 bytes)
|
||||
func (dt ElementType) Size() int32 {
|
||||
|
||||
switch dt {
|
||||
|
||||
case DataTypeUint32:
|
||||
fallthrough
|
||||
case DataTypeFloat32:
|
||||
@ -115,8 +156,123 @@ func (dt ElementType) Size() int32 {
|
||||
case DataTypeVec4:
|
||||
return 4 * 4
|
||||
|
||||
case DataTypeMat2:
|
||||
return 2 * 2 * 4
|
||||
case DataTypeMat3:
|
||||
return 3 * 3 * 4
|
||||
case DataTypeMat4:
|
||||
return 4 * 4 * 4
|
||||
|
||||
case DataTypeStruct:
|
||||
logging.ErrLog.Fatalf("ElementType.Size of DataTypeStruct is not supported")
|
||||
return 0
|
||||
|
||||
default:
|
||||
assert.T(false, fmt.Sprintf("Unknown data type passed. DataType '%v'", dt))
|
||||
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (dt ElementType) GlStd140BaseAlignment() uint8 {
|
||||
|
||||
switch dt {
|
||||
|
||||
case DataTypeUint32:
|
||||
fallthrough
|
||||
case DataTypeFloat32:
|
||||
fallthrough
|
||||
case DataTypeInt32:
|
||||
return 4
|
||||
|
||||
case DataTypeVec2:
|
||||
return 4 * 2
|
||||
|
||||
// Vec3 has the same alignment as vec4
|
||||
case DataTypeVec3:
|
||||
fallthrough
|
||||
case DataTypeVec4:
|
||||
return 4 * 4
|
||||
|
||||
// Matrices follow: (vec4Alignment) * numColumns
|
||||
case DataTypeMat2:
|
||||
return (4 * 4) * 2
|
||||
case DataTypeMat3:
|
||||
return (4 * 4) * 3
|
||||
case DataTypeMat4:
|
||||
return (4 * 4) * 4
|
||||
|
||||
case DataTypeStruct:
|
||||
logging.ErrLog.Fatalf("ElementType.GlStd140BaseAlignment of DataTypeStruct is not supported")
|
||||
return 0
|
||||
|
||||
default:
|
||||
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (dt ElementType) GlStd140AlignmentBoundary() uint16 {
|
||||
|
||||
switch dt {
|
||||
|
||||
case DataTypeUint32:
|
||||
fallthrough
|
||||
case DataTypeFloat32:
|
||||
fallthrough
|
||||
case DataTypeInt32:
|
||||
return 4
|
||||
|
||||
case DataTypeVec2:
|
||||
return 8
|
||||
|
||||
case DataTypeVec3:
|
||||
fallthrough
|
||||
case DataTypeVec4:
|
||||
fallthrough
|
||||
case DataTypeMat2:
|
||||
fallthrough
|
||||
case DataTypeMat3:
|
||||
fallthrough
|
||||
case DataTypeMat4:
|
||||
fallthrough
|
||||
case DataTypeStruct:
|
||||
return 16
|
||||
|
||||
default:
|
||||
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (dt ElementType) String() string {
|
||||
|
||||
switch dt {
|
||||
|
||||
case DataTypeUint32:
|
||||
return "uint32"
|
||||
case DataTypeFloat32:
|
||||
return "float32"
|
||||
case DataTypeInt32:
|
||||
return "int32"
|
||||
|
||||
case DataTypeVec2:
|
||||
return "Vec2"
|
||||
case DataTypeVec3:
|
||||
return "Vec3"
|
||||
case DataTypeVec4:
|
||||
return "Vec4"
|
||||
|
||||
case DataTypeMat2:
|
||||
return "Mat2"
|
||||
case DataTypeMat3:
|
||||
return "Mat3"
|
||||
case DataTypeMat4:
|
||||
return "Mat4"
|
||||
|
||||
case DataTypeStruct:
|
||||
return "Struct"
|
||||
|
||||
default:
|
||||
return "Unknown"
|
||||
}
|
||||
}
|
||||
|
||||
702
buffers/uniform_buffer.go
Executable file
702
buffers/uniform_buffer.go
Executable file
@ -0,0 +1,702 @@
|
||||
package buffers
|
||||
|
||||
import (
|
||||
"math"
|
||||
"reflect"
|
||||
|
||||
"github.com/bloeys/gglm/gglm"
|
||||
"github.com/bloeys/nmage/assert"
|
||||
"github.com/bloeys/nmage/logging"
|
||||
"github.com/go-gl/gl/v4.1-core/gl"
|
||||
)
|
||||
|
||||
type UniformBufferFieldInput struct {
|
||||
Id uint16
|
||||
Type ElementType
|
||||
// Count should be set in case this field is an array of type `[Count]Type`.
|
||||
// Count=0 is valid and is equivalent to Count=1, which means the type is NOT an array, but a single field.
|
||||
Count uint16
|
||||
|
||||
// Subfields is used when type is a struct, in which case it holds the fields of the struct.
|
||||
// Ids do not have to be unique across structs.
|
||||
Subfields []UniformBufferFieldInput
|
||||
}
|
||||
|
||||
type UniformBufferField struct {
|
||||
Id uint16
|
||||
AlignedOffset uint16
|
||||
// Count should be set in case this field is an array of type `[Count]Type`.
|
||||
// Count=0 is valid and is equivalent to Count=1, which means the type is NOT an array, but a single field.
|
||||
Count uint16
|
||||
Type ElementType
|
||||
|
||||
// Subfields is used when type is a struct, in which case it holds the fields of the struct.
|
||||
// Ids do not have to be unique across structs.
|
||||
Subfields []UniformBufferField
|
||||
}
|
||||
|
||||
type UniformBuffer struct {
|
||||
Id uint32
|
||||
// Size is the allocated memory in bytes on the GPU for this uniform buffer
|
||||
Size uint32
|
||||
Fields []UniformBufferField
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) Bind() {
|
||||
gl.BindBuffer(gl.UNIFORM_BUFFER, ub.Id)
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) UnBind() {
|
||||
gl.BindBuffer(gl.UNIFORM_BUFFER, 0)
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetBindPoint(bindPointIndex uint32) {
|
||||
gl.BindBufferBase(gl.UNIFORM_BUFFER, bindPointIndex, ub.Id)
|
||||
}
|
||||
|
||||
func addUniformBufferFieldsToArray(startAlignedOffset uint16, arrayToAddTo *[]UniformBufferField, fieldsToAdd []UniformBufferFieldInput) (totalSize uint32) {
|
||||
|
||||
if len(fieldsToAdd) == 0 {
|
||||
return 0
|
||||
}
|
||||
|
||||
// This function is recursive so only size the array once
|
||||
if cap(*arrayToAddTo) == 0 {
|
||||
*arrayToAddTo = make([]UniformBufferField, 0, len(fieldsToAdd))
|
||||
}
|
||||
|
||||
var alignedOffset uint16 = 0
|
||||
fieldIdToTypeMap := make(map[uint16]ElementType, len(fieldsToAdd))
|
||||
|
||||
for i := 0; i < len(fieldsToAdd); i++ {
|
||||
|
||||
f := fieldsToAdd[i]
|
||||
if f.Count == 0 {
|
||||
f.Count = 1
|
||||
}
|
||||
|
||||
existingFieldType, ok := fieldIdToTypeMap[f.Id]
|
||||
assert.T(!ok, "Uniform buffer field id is reused within the same uniform buffer. FieldId=%d was first used on a field with type=%s and then used on a different field with type=%s\n", f.Id, existingFieldType.String(), f.Type.String())
|
||||
|
||||
// To understand this take an example. Say we have a total offset of 100 and we are adding a vec4.
|
||||
// Vec4s must be aligned to a 16 byte boundary but 100 is not (100 % 16 != 0).
|
||||
//
|
||||
// To fix this, we take the alignment error which is alignErr=100 % 16=4, but this is error to the nearest
|
||||
// boundary, which is below the offset.
|
||||
//
|
||||
// To get the nearest boundary larger than the offset we can:
|
||||
// offset + (boundary - alignErr) == 100 + (16 - 4) == 112; 112 % 16 == 0, meaning its a boundary
|
||||
//
|
||||
// Note that arrays of scalars/vectors are always aligned to 16 bytes, like a vec4
|
||||
var alignmentBoundary uint16 = 16
|
||||
if f.Count == 1 {
|
||||
alignmentBoundary = f.Type.GlStd140AlignmentBoundary()
|
||||
}
|
||||
|
||||
alignmentError := alignedOffset % alignmentBoundary
|
||||
if alignmentError != 0 {
|
||||
alignedOffset += alignmentBoundary - alignmentError
|
||||
}
|
||||
|
||||
newField := UniformBufferField{Id: f.Id, Type: f.Type, AlignedOffset: startAlignedOffset + alignedOffset, Count: f.Count}
|
||||
*arrayToAddTo = append(*arrayToAddTo, newField)
|
||||
|
||||
// Prepare aligned offset for the next field.
|
||||
//
|
||||
// Matrices are treated as an array of column vectors, where each column is a vec4,
|
||||
// that's why we have a multiplier depending on how many columns we have when calculating
|
||||
// the offset
|
||||
multiplier := uint16(1)
|
||||
if f.Type == DataTypeMat2 {
|
||||
multiplier = 2
|
||||
} else if f.Type == DataTypeMat3 {
|
||||
multiplier = 3
|
||||
} else if f.Type == DataTypeMat4 {
|
||||
multiplier = 4
|
||||
}
|
||||
|
||||
if f.Type == DataTypeStruct {
|
||||
|
||||
subfieldsAlignedOffset := uint16(addUniformBufferFieldsToArray(startAlignedOffset+alignedOffset, arrayToAddTo, f.Subfields))
|
||||
|
||||
// Pad structs to 16 byte boundary
|
||||
subfieldsAlignmentError := subfieldsAlignedOffset % 16
|
||||
if subfieldsAlignmentError != 0 {
|
||||
subfieldsAlignedOffset += 16 - subfieldsAlignmentError
|
||||
}
|
||||
|
||||
alignedOffset += subfieldsAlignedOffset * f.Count
|
||||
|
||||
} else {
|
||||
alignedOffset = newField.AlignedOffset + alignmentBoundary*f.Count*multiplier - startAlignedOffset
|
||||
}
|
||||
}
|
||||
|
||||
return uint32(alignedOffset)
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) getField(fieldId uint16, fieldType ElementType) UniformBufferField {
|
||||
|
||||
for i := 0; i < len(ub.Fields); i++ {
|
||||
|
||||
f := ub.Fields[i]
|
||||
|
||||
if f.Id != fieldId {
|
||||
continue
|
||||
}
|
||||
|
||||
assert.T(f.Type == fieldType, "Uniform buffer field id is reused within the same uniform buffer. FieldId=%d was first used on a field with type=%v, but is now being used on a field with type=%v\n", fieldId, f.Type.String(), fieldType.String())
|
||||
|
||||
return f
|
||||
}
|
||||
|
||||
logging.ErrLog.Panicf("couldn't find uniform buffer field of id=%d and type=%s\n", fieldId, fieldType.String())
|
||||
return UniformBufferField{}
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetInt32(fieldId uint16, val int32) {
|
||||
|
||||
f := ub.getField(fieldId, DataTypeInt32)
|
||||
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4, gl.Ptr(&val))
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetUint32(fieldId uint16, val uint32) {
|
||||
|
||||
f := ub.getField(fieldId, DataTypeUint32)
|
||||
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4, gl.Ptr(&val))
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetFloat32(fieldId uint16, val float32) {
|
||||
|
||||
f := ub.getField(fieldId, DataTypeFloat32)
|
||||
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4, gl.Ptr(&val))
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetVec2(fieldId uint16, val *gglm.Vec2) {
|
||||
f := ub.getField(fieldId, DataTypeVec2)
|
||||
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*2, gl.Ptr(&val.Data[0]))
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetVec3(fieldId uint16, val *gglm.Vec3) {
|
||||
f := ub.getField(fieldId, DataTypeVec3)
|
||||
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*3, gl.Ptr(&val.Data[0]))
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetVec4(fieldId uint16, val *gglm.Vec4) {
|
||||
f := ub.getField(fieldId, DataTypeVec4)
|
||||
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*4, gl.Ptr(&val.Data[0]))
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetMat2(fieldId uint16, val *gglm.Mat2) {
|
||||
f := ub.getField(fieldId, DataTypeMat2)
|
||||
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*4, gl.Ptr(&val.Data[0][0]))
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetMat3(fieldId uint16, val *gglm.Mat3) {
|
||||
f := ub.getField(fieldId, DataTypeMat3)
|
||||
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*9, gl.Ptr(&val.Data[0][0]))
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetMat4(fieldId uint16, val *gglm.Mat4) {
|
||||
f := ub.getField(fieldId, DataTypeMat4)
|
||||
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*16, gl.Ptr(&val.Data[0][0]))
|
||||
}
|
||||
|
||||
func (ub *UniformBuffer) SetStruct(inputStruct any) {
|
||||
setStruct(ub.Fields, make([]byte, ub.Size), inputStruct, 1000_000, false)
|
||||
}
|
||||
|
||||
func setStruct(fields []UniformBufferField, buf []byte, inputStruct any, maxFieldsToConsume int, onlyBufWrite bool) (bytesWritten, fieldsConsumed int) {
|
||||
|
||||
if len(fields) == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
if inputStruct == nil {
|
||||
logging.ErrLog.Panicf("UniformBuffer.SetStruct called with a value that is nil")
|
||||
}
|
||||
|
||||
structVal := reflect.ValueOf(inputStruct)
|
||||
if structVal.Kind() != reflect.Struct {
|
||||
logging.ErrLog.Panicf("UniformBuffer.SetStruct called with a value that is not a struct. Val=%v\n", inputStruct)
|
||||
}
|
||||
|
||||
structFieldIndex := 0
|
||||
// structFieldCount := structVal.NumField()
|
||||
for fieldIndex := 0; fieldIndex < len(fields) && fieldIndex < maxFieldsToConsume; fieldIndex++ {
|
||||
|
||||
ubField := &fields[fieldIndex]
|
||||
valField := structVal.Field(structFieldIndex)
|
||||
|
||||
fieldsConsumed++
|
||||
structFieldIndex++
|
||||
|
||||
kind := valField.Kind()
|
||||
if kind == reflect.Pointer {
|
||||
valField = valField.Elem()
|
||||
}
|
||||
|
||||
var elementType reflect.Type
|
||||
isArray := kind == reflect.Slice || kind == reflect.Array
|
||||
if isArray {
|
||||
elementType = valField.Type().Elem()
|
||||
} else {
|
||||
elementType = valField.Type()
|
||||
}
|
||||
|
||||
if isArray {
|
||||
assert.T(valField.Len() == int(ubField.Count), "ubo field of id=%d is an array/slice field of length=%d but got input of length=%d\n", ubField.Id, ubField.Count, valField.Len())
|
||||
}
|
||||
|
||||
typeMatches := false
|
||||
bytesWritten = int(ubField.AlignedOffset)
|
||||
|
||||
switch ubField.Type {
|
||||
|
||||
case DataTypeUint32:
|
||||
|
||||
typeMatches = elementType.Name() == "uint32"
|
||||
if typeMatches {
|
||||
|
||||
if isArray {
|
||||
Write32BitIntegerSliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]uint32))
|
||||
} else {
|
||||
Write32BitIntegerToByteBuf(buf, &bytesWritten, uint32(valField.Uint()))
|
||||
}
|
||||
}
|
||||
|
||||
case DataTypeFloat32:
|
||||
|
||||
typeMatches = elementType.Name() == "float32"
|
||||
if typeMatches {
|
||||
|
||||
if isArray {
|
||||
WriteF32SliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]float32))
|
||||
} else {
|
||||
WriteF32ToByteBuf(buf, &bytesWritten, float32(valField.Float()))
|
||||
}
|
||||
}
|
||||
|
||||
case DataTypeInt32:
|
||||
|
||||
typeMatches = elementType.Name() == "int32"
|
||||
if typeMatches {
|
||||
|
||||
if isArray {
|
||||
Write32BitIntegerSliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]int32))
|
||||
} else {
|
||||
Write32BitIntegerToByteBuf(buf, &bytesWritten, uint32(valField.Int()))
|
||||
}
|
||||
}
|
||||
|
||||
case DataTypeVec2:
|
||||
|
||||
typeMatches = elementType.Name() == "Vec2"
|
||||
|
||||
if typeMatches {
|
||||
|
||||
if isArray {
|
||||
WriteVec2SliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]gglm.Vec2))
|
||||
} else {
|
||||
v2 := valField.Interface().(gglm.Vec2)
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, v2.Data[:])
|
||||
}
|
||||
}
|
||||
|
||||
case DataTypeVec3:
|
||||
|
||||
typeMatches = elementType.Name() == "Vec3"
|
||||
|
||||
if typeMatches {
|
||||
|
||||
if isArray {
|
||||
WriteVec3SliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]gglm.Vec3))
|
||||
} else {
|
||||
v3 := valField.Interface().(gglm.Vec3)
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, v3.Data[:])
|
||||
}
|
||||
}
|
||||
|
||||
case DataTypeVec4:
|
||||
|
||||
typeMatches = elementType.Name() == "Vec4"
|
||||
|
||||
if typeMatches {
|
||||
|
||||
if isArray {
|
||||
WriteVec4SliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]gglm.Vec4))
|
||||
} else {
|
||||
v3 := valField.Interface().(gglm.Vec4)
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, v3.Data[:])
|
||||
}
|
||||
}
|
||||
|
||||
case DataTypeMat2:
|
||||
|
||||
typeMatches = elementType.Name() == "Mat2"
|
||||
|
||||
if typeMatches {
|
||||
|
||||
if isArray {
|
||||
m2Arr := valField.Interface().([]gglm.Mat2)
|
||||
WriteMat2SliceToByteBufWithAlignment(buf, &bytesWritten, 16*2, m2Arr)
|
||||
} else {
|
||||
m := valField.Interface().(gglm.Mat2)
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[0][:])
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[1][:])
|
||||
}
|
||||
}
|
||||
|
||||
case DataTypeMat3:
|
||||
|
||||
typeMatches = elementType.Name() == "Mat3"
|
||||
|
||||
if typeMatches {
|
||||
|
||||
if isArray {
|
||||
m3Arr := valField.Interface().([]gglm.Mat3)
|
||||
WriteMat3SliceToByteBufWithAlignment(buf, &bytesWritten, 16*3, m3Arr)
|
||||
} else {
|
||||
m := valField.Interface().(gglm.Mat3)
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[0][:])
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[1][:])
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[2][:])
|
||||
}
|
||||
}
|
||||
|
||||
case DataTypeMat4:
|
||||
|
||||
typeMatches = elementType.Name() == "Mat4"
|
||||
|
||||
if typeMatches {
|
||||
|
||||
if isArray {
|
||||
m4Arr := valField.Interface().([]gglm.Mat4)
|
||||
WriteMat4SliceToByteBufWithAlignment(buf, &bytesWritten, 16*4, m4Arr)
|
||||
} else {
|
||||
m := valField.Interface().(gglm.Mat4)
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[0][:])
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[1][:])
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[2][:])
|
||||
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[3][:])
|
||||
}
|
||||
}
|
||||
|
||||
case DataTypeStruct:
|
||||
typeMatches = kind == reflect.Struct
|
||||
|
||||
if typeMatches {
|
||||
|
||||
setStructBytesWritten, setStructFieldsConsumed := setStruct(fields[fieldIndex+1:], buf, valField.Interface(), valField.NumField(), true)
|
||||
|
||||
bytesWritten += setStructBytesWritten
|
||||
fieldIndex += setStructFieldsConsumed
|
||||
fieldsConsumed += setStructFieldsConsumed
|
||||
}
|
||||
|
||||
default:
|
||||
assert.T(false, "Unknown uniform buffer data type passed. DataType '%d'", ubField.Type)
|
||||
}
|
||||
|
||||
if !typeMatches {
|
||||
logging.ErrLog.Panicf("Struct field ordering and types must match uniform buffer fields, but at field index %d got UniformBufferField=%v but a struct field of type %s\n", fieldIndex, ubField, valField.String())
|
||||
}
|
||||
}
|
||||
|
||||
if bytesWritten == 0 {
|
||||
return 0, fieldsConsumed
|
||||
}
|
||||
|
||||
if !onlyBufWrite {
|
||||
gl.BufferSubData(gl.UNIFORM_BUFFER, 0, bytesWritten, gl.Ptr(&buf[0]))
|
||||
}
|
||||
|
||||
return bytesWritten - int(fields[0].AlignedOffset), fieldsConsumed
|
||||
}
|
||||
|
||||
func Write32BitIntegerToByteBuf[T uint32 | int32](buf []byte, startIndex *int, val T) {
|
||||
|
||||
assert.T(*startIndex+4 <= len(buf), "failed to write uint32/int32 to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d", *startIndex, len(buf))
|
||||
|
||||
buf[*startIndex] = byte(val)
|
||||
buf[*startIndex+1] = byte(val >> 8)
|
||||
buf[*startIndex+2] = byte(val >> 16)
|
||||
buf[*startIndex+3] = byte(val >> 24)
|
||||
|
||||
*startIndex += 4
|
||||
}
|
||||
|
||||
func Write32BitIntegerSliceToByteBufWithAlignment[T uint32 | int32](buf []byte, startIndex *int, alignmentPerField int, vals []T) {
|
||||
|
||||
assert.T(*startIndex+len(vals)*alignmentPerField <= len(buf), "failed to write uint32/int32 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerField, *startIndex, len(buf), len(vals)*alignmentPerField)
|
||||
|
||||
for i := 0; i < len(vals); i++ {
|
||||
|
||||
val := vals[i]
|
||||
|
||||
buf[*startIndex] = byte(val)
|
||||
buf[*startIndex+1] = byte(val >> 8)
|
||||
buf[*startIndex+2] = byte(val >> 16)
|
||||
buf[*startIndex+3] = byte(val >> 24)
|
||||
|
||||
*startIndex += alignmentPerField
|
||||
}
|
||||
}
|
||||
|
||||
func WriteF32ToByteBuf(buf []byte, startIndex *int, val float32) {
|
||||
|
||||
assert.T(*startIndex+4 <= len(buf), "failed to write float32 to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d", *startIndex, len(buf))
|
||||
|
||||
bits := math.Float32bits(val)
|
||||
|
||||
buf[*startIndex] = byte(bits)
|
||||
buf[*startIndex+1] = byte(bits >> 8)
|
||||
buf[*startIndex+2] = byte(bits >> 16)
|
||||
buf[*startIndex+3] = byte(bits >> 24)
|
||||
|
||||
*startIndex += 4
|
||||
}
|
||||
|
||||
func WriteF32SliceToByteBuf(buf []byte, startIndex *int, vals []float32) {
|
||||
|
||||
assert.T(*startIndex+len(vals)*4 <= len(buf), "failed to write slice of float32 to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", *startIndex, len(buf), len(vals)*4)
|
||||
|
||||
for i := 0; i < len(vals); i++ {
|
||||
|
||||
bits := math.Float32bits(vals[i])
|
||||
|
||||
buf[*startIndex] = byte(bits)
|
||||
buf[*startIndex+1] = byte(bits >> 8)
|
||||
buf[*startIndex+2] = byte(bits >> 16)
|
||||
buf[*startIndex+3] = byte(bits >> 24)
|
||||
|
||||
*startIndex += 4
|
||||
}
|
||||
}
|
||||
|
||||
func WriteF32SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerField int, vals []float32) {
|
||||
|
||||
assert.T(*startIndex+len(vals)*alignmentPerField <= len(buf), "failed to write slice of float32 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerField, *startIndex, len(buf), len(vals)*alignmentPerField)
|
||||
|
||||
for i := 0; i < len(vals); i++ {
|
||||
|
||||
bits := math.Float32bits(vals[i])
|
||||
|
||||
buf[*startIndex] = byte(bits)
|
||||
buf[*startIndex+1] = byte(bits >> 8)
|
||||
buf[*startIndex+2] = byte(bits >> 16)
|
||||
buf[*startIndex+3] = byte(bits >> 24)
|
||||
|
||||
*startIndex += alignmentPerField
|
||||
}
|
||||
}
|
||||
|
||||
func WriteVec2SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerVector int, vals []gglm.Vec2) {
|
||||
|
||||
assert.T(*startIndex+len(vals)*alignmentPerVector <= len(buf), "failed to write slice of gglm.Vec2 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerVector, *startIndex, len(buf), len(vals)*alignmentPerVector)
|
||||
|
||||
for i := 0; i < len(vals); i++ {
|
||||
|
||||
bitsX := math.Float32bits(vals[i].X())
|
||||
bitsY := math.Float32bits(vals[i].Y())
|
||||
|
||||
buf[*startIndex] = byte(bitsX)
|
||||
buf[*startIndex+1] = byte(bitsX >> 8)
|
||||
buf[*startIndex+2] = byte(bitsX >> 16)
|
||||
buf[*startIndex+3] = byte(bitsX >> 24)
|
||||
|
||||
buf[*startIndex+4] = byte(bitsY)
|
||||
buf[*startIndex+5] = byte(bitsY >> 8)
|
||||
buf[*startIndex+6] = byte(bitsY >> 16)
|
||||
buf[*startIndex+7] = byte(bitsY >> 24)
|
||||
|
||||
*startIndex += alignmentPerVector
|
||||
}
|
||||
}
|
||||
|
||||
func WriteVec3SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerVector int, vals []gglm.Vec3) {
|
||||
|
||||
assert.T(*startIndex+len(vals)*alignmentPerVector <= len(buf), "failed to write slice of gglm.Vec3 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerVector, *startIndex, len(buf), len(vals)*alignmentPerVector)
|
||||
|
||||
for i := 0; i < len(vals); i++ {
|
||||
|
||||
bitsX := math.Float32bits(vals[i].X())
|
||||
bitsY := math.Float32bits(vals[i].Y())
|
||||
bitsZ := math.Float32bits(vals[i].Z())
|
||||
|
||||
buf[*startIndex] = byte(bitsX)
|
||||
buf[*startIndex+1] = byte(bitsX >> 8)
|
||||
buf[*startIndex+2] = byte(bitsX >> 16)
|
||||
buf[*startIndex+3] = byte(bitsX >> 24)
|
||||
|
||||
buf[*startIndex+4] = byte(bitsY)
|
||||
buf[*startIndex+5] = byte(bitsY >> 8)
|
||||
buf[*startIndex+6] = byte(bitsY >> 16)
|
||||
buf[*startIndex+7] = byte(bitsY >> 24)
|
||||
|
||||
buf[*startIndex+8] = byte(bitsZ)
|
||||
buf[*startIndex+9] = byte(bitsZ >> 8)
|
||||
buf[*startIndex+10] = byte(bitsZ >> 16)
|
||||
buf[*startIndex+11] = byte(bitsZ >> 24)
|
||||
|
||||
*startIndex += alignmentPerVector
|
||||
}
|
||||
}
|
||||
|
||||
func WriteVec4SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerVector int, vals []gglm.Vec4) {
|
||||
|
||||
assert.T(*startIndex+len(vals)*alignmentPerVector <= len(buf), "failed to write slice of gglm.Vec4 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerVector, *startIndex, len(buf), len(vals)*alignmentPerVector)
|
||||
|
||||
for i := 0; i < len(vals); i++ {
|
||||
|
||||
bitsX := math.Float32bits(vals[i].X())
|
||||
bitsY := math.Float32bits(vals[i].Y())
|
||||
bitsZ := math.Float32bits(vals[i].Z())
|
||||
bitsW := math.Float32bits(vals[i].W())
|
||||
|
||||
buf[*startIndex] = byte(bitsX)
|
||||
buf[*startIndex+1] = byte(bitsX >> 8)
|
||||
buf[*startIndex+2] = byte(bitsX >> 16)
|
||||
buf[*startIndex+3] = byte(bitsX >> 24)
|
||||
|
||||
buf[*startIndex+4] = byte(bitsY)
|
||||
buf[*startIndex+5] = byte(bitsY >> 8)
|
||||
buf[*startIndex+6] = byte(bitsY >> 16)
|
||||
buf[*startIndex+7] = byte(bitsY >> 24)
|
||||
|
||||
buf[*startIndex+8] = byte(bitsZ)
|
||||
buf[*startIndex+9] = byte(bitsZ >> 8)
|
||||
buf[*startIndex+10] = byte(bitsZ >> 16)
|
||||
buf[*startIndex+11] = byte(bitsZ >> 24)
|
||||
|
||||
buf[*startIndex+12] = byte(bitsW)
|
||||
buf[*startIndex+13] = byte(bitsW >> 8)
|
||||
buf[*startIndex+14] = byte(bitsW >> 16)
|
||||
buf[*startIndex+15] = byte(bitsW >> 24)
|
||||
|
||||
*startIndex += alignmentPerVector
|
||||
}
|
||||
}
|
||||
|
||||
func WriteMat2SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerMatrix int, vals []gglm.Mat2) {
|
||||
|
||||
assert.T(*startIndex+len(vals)*alignmentPerMatrix <= len(buf), "failed to write slice of gglm.Mat2 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerMatrix, *startIndex, len(buf), len(vals)*alignmentPerMatrix)
|
||||
|
||||
for i := 0; i < len(vals); i++ {
|
||||
|
||||
m := &vals[i]
|
||||
|
||||
WriteVec2SliceToByteBufWithAlignment(
|
||||
buf,
|
||||
startIndex,
|
||||
16,
|
||||
[]gglm.Vec2{
|
||||
{Data: m.Data[0]},
|
||||
{Data: m.Data[1]},
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
func WriteMat3SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerMatrix int, vals []gglm.Mat3) {
|
||||
|
||||
assert.T(*startIndex+len(vals)*alignmentPerMatrix <= len(buf), "failed to write slice of gglm.Mat3 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerMatrix, *startIndex, len(buf), len(vals)*alignmentPerMatrix)
|
||||
|
||||
for i := 0; i < len(vals); i++ {
|
||||
|
||||
m := &vals[i]
|
||||
|
||||
WriteVec3SliceToByteBufWithAlignment(
|
||||
buf,
|
||||
startIndex,
|
||||
16,
|
||||
[]gglm.Vec3{
|
||||
{Data: m.Data[0]},
|
||||
{Data: m.Data[1]},
|
||||
{Data: m.Data[2]},
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
func WriteMat4SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerMatrix int, vals []gglm.Mat4) {
|
||||
|
||||
assert.T(*startIndex+len(vals)*alignmentPerMatrix <= len(buf), "failed to write slice of gglm.Mat2 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerMatrix, *startIndex, len(buf), len(vals)*alignmentPerMatrix)
|
||||
|
||||
for i := 0; i < len(vals); i++ {
|
||||
|
||||
m := &vals[i]
|
||||
|
||||
WriteVec4SliceToByteBufWithAlignment(
|
||||
buf,
|
||||
startIndex,
|
||||
16,
|
||||
[]gglm.Vec4{
|
||||
{Data: m.Data[0]},
|
||||
{Data: m.Data[1]},
|
||||
{Data: m.Data[2]},
|
||||
{Data: m.Data[3]},
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
func ReflectValueMatchesUniformBufferField(v reflect.Value, ubField *UniformBufferField) bool {
|
||||
|
||||
if v.Kind() == reflect.Pointer {
|
||||
v = v.Elem()
|
||||
}
|
||||
|
||||
switch ubField.Type {
|
||||
|
||||
case DataTypeUint32:
|
||||
t := v.Type()
|
||||
return t.Name() == "uint32"
|
||||
case DataTypeFloat32:
|
||||
t := v.Type()
|
||||
return t.Name() == "float32"
|
||||
case DataTypeInt32:
|
||||
t := v.Type()
|
||||
return t.Name() == "int32"
|
||||
case DataTypeVec2:
|
||||
_, ok := v.Interface().(gglm.Vec2)
|
||||
return ok
|
||||
case DataTypeVec3:
|
||||
_, ok := v.Interface().(gglm.Vec3)
|
||||
return ok
|
||||
case DataTypeVec4:
|
||||
_, ok := v.Interface().(gglm.Vec4)
|
||||
return ok
|
||||
case DataTypeMat2:
|
||||
_, ok := v.Interface().(gglm.Mat2)
|
||||
return ok
|
||||
case DataTypeMat3:
|
||||
_, ok := v.Interface().(gglm.Mat3)
|
||||
return ok
|
||||
case DataTypeMat4:
|
||||
_, ok := v.Interface().(gglm.Mat4)
|
||||
return ok
|
||||
|
||||
default:
|
||||
assert.T(false, "Unknown uniform buffer data type passed. DataType '%d'", ubField.Type)
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
func NewUniformBuffer(fields []UniformBufferFieldInput) UniformBuffer {
|
||||
|
||||
ub := UniformBuffer{}
|
||||
|
||||
ub.Size = addUniformBufferFieldsToArray(0, &ub.Fields, fields)
|
||||
|
||||
gl.GenBuffers(1, &ub.Id)
|
||||
if ub.Id == 0 {
|
||||
logging.ErrLog.Panicln("Failed to create OpenGL buffer for a uniform buffer")
|
||||
}
|
||||
|
||||
ub.Bind()
|
||||
gl.BufferData(gl.UNIFORM_BUFFER, int(ub.Size), gl.Ptr(nil), gl.STATIC_DRAW)
|
||||
ub.UnBind()
|
||||
|
||||
return ub
|
||||
}
|
||||
@ -55,7 +55,7 @@ func NewVertexBuffer(layout ...Element) VertexBuffer {
|
||||
|
||||
gl.GenBuffers(1, &vb.Id)
|
||||
if vb.Id == 0 {
|
||||
logging.ErrLog.Println("Failed to create OpenGL buffer")
|
||||
logging.ErrLog.Panicln("Failed to create OpenGL buffer")
|
||||
}
|
||||
|
||||
vb.SetLayout(layout...)
|
||||
|
||||
@ -41,7 +41,6 @@ func Run(g Game, w *Window, rend renderer.Render, ui nmageimgui.ImguiInfo) {
|
||||
|
||||
for isRunning {
|
||||
|
||||
//PERF: Cache these
|
||||
width, height = w.SDLWin.GetSize()
|
||||
fbWidth, fbHeight = w.SDLWin.GLGetDrawableSize()
|
||||
|
||||
|
||||
7
go.mod
7
go.mod
@ -8,7 +8,7 @@ require github.com/go-gl/gl v0.0.0-20211210172815-726fda9656d6
|
||||
|
||||
require (
|
||||
github.com/bloeys/assimp-go v0.4.4
|
||||
github.com/bloeys/gglm v0.49.0
|
||||
github.com/bloeys/gglm v0.50.0
|
||||
)
|
||||
|
||||
require (
|
||||
@ -16,4 +16,7 @@ require (
|
||||
github.com/mandykoh/prism v0.35.1
|
||||
)
|
||||
|
||||
require github.com/mandykoh/go-parallel v0.1.0 // indirect
|
||||
require (
|
||||
github.com/mandykoh/go-parallel v0.1.0 // indirect
|
||||
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842 // indirect
|
||||
)
|
||||
|
||||
6
go.sum
6
go.sum
@ -2,8 +2,8 @@ github.com/AllenDang/cimgui-go v0.0.0-20230720025235-f2ff398a66b2 h1:3HA/5qD8Rim
|
||||
github.com/AllenDang/cimgui-go v0.0.0-20230720025235-f2ff398a66b2/go.mod h1:iNfbIyOBN8k3XScMxULbrwYbPsXEAUD0Jb6UwrspQb8=
|
||||
github.com/bloeys/assimp-go v0.4.4 h1:Yn5e/RpE0Oes0YMBy8O7KkwAO4R/RpgrZPJCt08dVIU=
|
||||
github.com/bloeys/assimp-go v0.4.4/go.mod h1:my3yRxT7CfOztmvi+0svmwbaqw0KFrxaHxncoyaEIP0=
|
||||
github.com/bloeys/gglm v0.49.0 h1:YtbyHpszYhjnxw7KVV0LaCdBktRMqfGx/i37EMomxsE=
|
||||
github.com/bloeys/gglm v0.49.0/go.mod h1:qwJQ0WzV191wAMwlGicbfbChbKoSedMk7gFFX6GnyOk=
|
||||
github.com/bloeys/gglm v0.50.0 h1:DlGLp9z8KMNx+hNR6PjnPmC0HjDRC19QwAKL1iwhOxs=
|
||||
github.com/bloeys/gglm v0.50.0/go.mod h1:5s2U/NiOrtJyrSup1j8wK+QOBmGIO03ub0LHMvuNSK8=
|
||||
github.com/go-gl/gl v0.0.0-20211210172815-726fda9656d6 h1:zDw5v7qm4yH7N8C8uWd+8Ii9rROdgWxQuGoJ9WDXxfk=
|
||||
github.com/go-gl/gl v0.0.0-20211210172815-726fda9656d6/go.mod h1:9YTyiznxEY1fVinfM7RvRcjRHbw2xLBJ3AAGIT0I4Nw=
|
||||
github.com/mandykoh/go-parallel v0.1.0 h1:7vJMNMC4dsbgZdkAb2A8tV5ENY1v7VxIO1wzQWZoT8k=
|
||||
@ -15,6 +15,8 @@ github.com/veandco/go-sdl2 v0.4.35/go.mod h1:OROqMhHD43nT4/i9crJukyVecjPNYYuCofe
|
||||
github.com/yuin/goldmark v1.4.13/go.mod h1:6yULJ656Px+3vBD8DxQVa3kxgyrAnzto9xy5taEt/CY=
|
||||
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
|
||||
golang.org/x/crypto v0.0.0-20210921155107-089bfa567519/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
|
||||
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842 h1:vr/HnozRka3pE4EsMEg1lgkXJkTFJCVUX+S/ZT6wYzM=
|
||||
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842/go.mod h1:XtvwrStGgqGPLc4cjQfWqZHG1YFdYs6swckp8vpsjnc=
|
||||
golang.org/x/image v0.5.0 h1:5JMiNunQeQw++mMOz48/ISeNu3Iweh/JaZU8ZLqHRrI=
|
||||
golang.org/x/image v0.5.0/go.mod h1:FVC7BI/5Ym8R25iw5OLsgshdUBbT1h5jZTpA+mvAdZ4=
|
||||
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4/go.mod h1:jJ57K6gSWd91VN4djpZkiMVwK6gcyfeH4XE8wZrZaV4=
|
||||
|
||||
@ -124,6 +124,21 @@ func (m *Material) UnBind() {
|
||||
gl.UseProgram(0)
|
||||
}
|
||||
|
||||
func (m *Material) SetUniformBlockBindingPoint(uniformBlockName string, bindPointIndex uint32) {
|
||||
|
||||
nullStr := gl.Str(uniformBlockName + "\x00")
|
||||
index := gl.GetUniformBlockIndex(m.ShaderProg.Id, nullStr)
|
||||
assert.T(
|
||||
index != gl.INVALID_INDEX,
|
||||
"SetUniformBlockBindingPoint for material=%s (matId=%d; shaderId=%d) failed because the uniform block=%s wasn't found",
|
||||
m.Name,
|
||||
m.Id,
|
||||
m.ShaderProg.Id,
|
||||
uniformBlockName,
|
||||
)
|
||||
gl.UniformBlockBinding(m.ShaderProg.Id, index, bindPointIndex)
|
||||
}
|
||||
|
||||
func (m *Material) GetAttribLoc(attribName string) int32 {
|
||||
|
||||
loc, ok := m.AttribLocs[attribName]
|
||||
|
||||
@ -14,33 +14,25 @@ layout(location=3) in vec2 vertUV0In;
|
||||
layout(location=4) in vec3 vertColorIn;
|
||||
|
||||
//
|
||||
// Uniforms
|
||||
// UBOs
|
||||
//
|
||||
uniform vec3 camPos;
|
||||
uniform mat4 modelMat;
|
||||
uniform mat3 normalMat;
|
||||
uniform mat4 projViewMat;
|
||||
uniform mat4 dirLightProjViewMat;
|
||||
uniform mat4 spotLightProjViewMats[NUM_SPOT_LIGHTS];
|
||||
|
||||
struct DirLight {
|
||||
vec3 dir;
|
||||
vec3 diffuseColor;
|
||||
vec3 specularColor;
|
||||
sampler2D shadowMap;
|
||||
};
|
||||
uniform DirLight dirLight;
|
||||
uniform sampler2D dirLightShadowMap;
|
||||
|
||||
struct PointLight {
|
||||
vec3 pos;
|
||||
vec3 diffuseColor;
|
||||
vec3 specularColor;
|
||||
float constant;
|
||||
float linear;
|
||||
float quadratic;
|
||||
float falloff;
|
||||
float radius;
|
||||
float maxBias;
|
||||
float nearPlane;
|
||||
float farPlane;
|
||||
};
|
||||
uniform PointLight pointLights[NUM_POINT_LIGHTS];
|
||||
|
||||
struct SpotLight {
|
||||
vec3 pos;
|
||||
@ -50,7 +42,24 @@ struct SpotLight {
|
||||
float innerCutoff;
|
||||
float outerCutoff;
|
||||
};
|
||||
|
||||
layout (std140) uniform GlobalMatrices {
|
||||
vec3 camPos;
|
||||
mat4 projViewMat;
|
||||
};
|
||||
|
||||
layout (std140) uniform Lights {
|
||||
DirLight dirLight;
|
||||
};
|
||||
|
||||
//
|
||||
// Uniforms
|
||||
//
|
||||
uniform PointLight pointLights[NUM_POINT_LIGHTS];
|
||||
uniform SpotLight spotLights[NUM_SPOT_LIGHTS];
|
||||
uniform mat4 modelMat;
|
||||
uniform mat4 dirLightProjViewMat;
|
||||
uniform mat4 spotLightProjViewMats[NUM_SPOT_LIGHTS];
|
||||
|
||||
//
|
||||
// Outputs
|
||||
@ -69,6 +78,16 @@ out vec3 tangentSpotLightPositions[NUM_SPOT_LIGHTS];
|
||||
out vec3 tangentSpotLightDirections[NUM_SPOT_LIGHTS];
|
||||
out vec3 tangentPointLightPositions[NUM_POINT_LIGHTS];
|
||||
|
||||
struct Test1 {
|
||||
float ff;
|
||||
vec3 v3;
|
||||
};
|
||||
|
||||
layout (std140) uniform Test2 {
|
||||
float f1;
|
||||
Test1 s;
|
||||
};
|
||||
|
||||
void main()
|
||||
{
|
||||
vertUV0 = vertUV0In;
|
||||
@ -154,17 +173,17 @@ struct DirLight {
|
||||
vec3 dir;
|
||||
vec3 diffuseColor;
|
||||
vec3 specularColor;
|
||||
sampler2D shadowMap;
|
||||
};
|
||||
uniform DirLight dirLight;
|
||||
uniform sampler2D dirLightShadowMap;
|
||||
|
||||
struct PointLight {
|
||||
vec3 pos;
|
||||
vec3 diffuseColor;
|
||||
vec3 specularColor;
|
||||
float constant;
|
||||
float linear;
|
||||
float quadratic;
|
||||
float falloff;
|
||||
float radius;
|
||||
float maxBias;
|
||||
float nearPlane;
|
||||
float farPlane;
|
||||
};
|
||||
uniform PointLight pointLights[NUM_POINT_LIGHTS];
|
||||
@ -181,6 +200,15 @@ struct SpotLight {
|
||||
uniform SpotLight spotLights[NUM_SPOT_LIGHTS];
|
||||
uniform sampler2DArray spotLightShadowMaps;
|
||||
|
||||
layout (std140) uniform GlobalMatrices {
|
||||
vec3 camPos;
|
||||
mat4 projViewMat;
|
||||
};
|
||||
|
||||
layout (std140) uniform Lights {
|
||||
DirLight dirLight;
|
||||
};
|
||||
|
||||
uniform vec3 ambientColor = vec3(0.2, 0.2, 0.2);
|
||||
|
||||
//
|
||||
@ -248,34 +276,88 @@ vec3 CalcDirLight()
|
||||
vec3 finalSpecular = specularAmount * dirLight.specularColor * specularTexColor.rgb;
|
||||
|
||||
// Shadow
|
||||
float shadow = CalcDirShadow(dirLight.shadowMap, lightDir);
|
||||
float shadow = CalcDirShadow(dirLightShadowMap, lightDir);
|
||||
|
||||
return (finalDiffuse + finalSpecular) * (1 - shadow);
|
||||
}
|
||||
|
||||
float CalcPointShadow(int lightIndex, vec3 worldLightPos, vec3 tangentLightDir, float farPlane) {
|
||||
float CalcPointShadow(int lightIndex, vec3 worldLightPos, vec3 tangentLightDir, float maxBias, float nearPlane, float farPlane) {
|
||||
|
||||
vec3 lightToFrag = fragPos - worldLightPos;
|
||||
|
||||
// Get depth of current fragment
|
||||
float currentDepth = length(lightToFrag);
|
||||
|
||||
if (currentDepth < nearPlane) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
float closestDepth = texture(pointLightCubeShadowMaps, vec4(lightToFrag, lightIndex)).r;
|
||||
|
||||
// We stored depth in the cubemap in the range [0, 1], so now we move back to [0, farPlane]
|
||||
closestDepth *= farPlane;
|
||||
|
||||
// Get depth of current fragment
|
||||
float currentDepth = length(lightToFrag);
|
||||
float bias = max(maxBias * (1 - dot(normalizedVertNorm, tangentLightDir)), 0.005);
|
||||
|
||||
float bias = max(0.05 * (1 - dot(normalizedVertNorm, tangentLightDir)), 0.005);
|
||||
|
||||
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
|
||||
float shadow = currentDepth - bias > closestDepth ? 1 : 0;
|
||||
|
||||
return shadow;
|
||||
}
|
||||
|
||||
//
|
||||
// The following point light attenuation formulas
|
||||
// are from https://lisyarus.github.io/blog/posts/point-light-attenuation.html
|
||||
//
|
||||
// I found them more intuitive than the standard implementation and it also ensures
|
||||
// we have zero light at the selected distance.
|
||||
//
|
||||
float sqr(float x)
|
||||
{
|
||||
return x * x;
|
||||
}
|
||||
|
||||
// This version doesn't have a harsh cutoff at radius
|
||||
float AttenuateNoCusp(float dist, float radius, float falloff)
|
||||
{
|
||||
// Since we only use this as attenuation and max intensity defines
|
||||
// the max output value, anything more than 1 would increase
|
||||
// the output of the light, which I don't think makes sense for
|
||||
// our attenuation purposes.
|
||||
//
|
||||
// Seems to me this can be done simply by increasing color values above 255.
|
||||
//
|
||||
// Forcing to 1 for now.
|
||||
#define MAX_INTENSITY 1
|
||||
|
||||
float s = dist / radius;
|
||||
|
||||
if (s >= 1.0)
|
||||
return 0.0;
|
||||
|
||||
float s2 = sqr(s);
|
||||
|
||||
return MAX_INTENSITY * sqr(1 - s2) / (1 + falloff * s2);
|
||||
}
|
||||
|
||||
// This version has a harsh/immediate cutoff at radius
|
||||
float AttenuateCusp(float dist, float radius, float falloff)
|
||||
{
|
||||
#define MAX_INTENSITY 1
|
||||
|
||||
float s = dist / radius;
|
||||
|
||||
if (s >= 1.0)
|
||||
return 0.0;
|
||||
|
||||
float s2 = sqr(s);
|
||||
|
||||
return MAX_INTENSITY * sqr(1 - s2) / (1 + falloff * s);
|
||||
}
|
||||
|
||||
vec3 CalcPointLight(PointLight pointLight, int lightIndex)
|
||||
{
|
||||
// Ignore unset lights
|
||||
if (pointLight.constant == 0){
|
||||
// Ignore inactive lights
|
||||
if (pointLight.radius == 0){
|
||||
return vec3(0);
|
||||
}
|
||||
|
||||
@ -293,10 +375,10 @@ vec3 CalcPointLight(PointLight pointLight, int lightIndex)
|
||||
|
||||
// Attenuation
|
||||
float distToLight = length(tangentLightPos - tangentFragPos);
|
||||
float attenuation = 1 / (pointLight.constant + pointLight.linear * distToLight + pointLight.quadratic * (distToLight * distToLight));
|
||||
float attenuation = AttenuateNoCusp(distToLight, pointLight.radius, pointLight.falloff);
|
||||
|
||||
// Shadow
|
||||
float shadow = CalcPointShadow(lightIndex, pointLight.pos, tangentLightDir, pointLight.farPlane);
|
||||
float shadow = CalcPointShadow(lightIndex, pointLight.pos, tangentLightDir, pointLight.maxBias, pointLight.nearPlane, pointLight.farPlane);
|
||||
|
||||
return (finalDiffuse + finalSpecular) * attenuation * (1 - shadow);
|
||||
}
|
||||
@ -343,7 +425,10 @@ float CalcSpotShadow(vec3 tangentLightDir, int lightIndex)
|
||||
|
||||
vec3 CalcSpotLight(SpotLight light, int lightIndex)
|
||||
{
|
||||
if (light.innerCutoff == 0)
|
||||
// The inner/outer cutoffs are cosine values,
|
||||
// which means a value of 1 is mainly produced when the input
|
||||
// is 0 degrees or radians. cos(180) will also be 1, but that's too much :)
|
||||
if (light.innerCutoff == 1)
|
||||
return vec3(0);
|
||||
|
||||
vec3 tangentLightDir = tangentSpotLightDirections[lightIndex];
|
||||
|
||||
Reference in New Issue
Block a user