Compare commits

..

24 Commits

Author SHA1 Message Date
6d94efbf97 Update actions 2024-09-15 17:47:58 +04:00
28f543a579 Update action 2024-09-15 17:35:40 +04:00
2a73a12885 Update action 2024-09-15 17:34:23 +04:00
e4199b8d30 Update imgui 2024-09-15 17:20:37 +04:00
38248822e2 Update to go 1.23 2024-09-15 16:33:22 +04:00
5c98903723 Add all gl BufUsage values+support bufusage in ubo 2024-09-15 16:29:54 +04:00
3cdd40f0a2 Remove test log 2024-09-15 16:18:59 +04:00
9dccb23613 Move ambient color to lightubo 2024-09-15 16:18:03 +04:00
5dfdea9a7b Move spotlights to ubo 2024-09-15 16:09:37 +04:00
bcb46d1699 Fix ubo alignment+Move point lights to ubo 2024-09-15 15:51:26 +04:00
91807a4093 Merge remote-tracking branch 'refs/remotes/origin/dev' into dev 2024-09-15 12:36:32 +04:00
09231c5ebd Update ubo.SetStruct to handle nested struct arrays 2024-09-15 12:33:34 +04:00
0e98dc85f5 Update ubo.SetStruct to handle nested structs 2024-09-15 12:31:26 +04:00
f2b757c606 Move dirLight&camPos&projViewMat to ubos 2024-09-15 08:40:05 +04:00
3be4ad9c45 Optimize 2024-09-14 19:41:39 +04:00
bbc8652292 What if we could have ubos with nested structs 2024-09-14 18:38:59 +04:00
0d34e0fe6e Ubos with nested structs slowly getting there 2024-06-06 04:59:40 +04:00
870653019c Support ubo matrix arrays+fix ubo matrix field bug 2024-05-26 21:14:33 +04:00
79cb6805c4 Scalar uniform array in uniform buffers 2024-05-26 15:03:00 +04:00
ff7fe4e531 Struct to ubo support 2024-05-26 12:55:58 +04:00
cb20e8ba8b Initial uniform buffers implementation 2024-05-23 07:57:46 +04:00
9e6fdacb48 Much nicer point lights! 2024-05-14 09:07:54 +04:00
f13db47918 Much nicer point light formulas 2024-05-14 07:36:14 +04:00
dcfe254052 Stop sudden camera snaps+nicer debug window 2024-05-14 06:25:39 +04:00
15 changed files with 1452 additions and 332 deletions

View File

@ -5,20 +5,61 @@ on:
workflow_dispatch:
jobs:
build-nmage-macos:
runs-on: macos-12
steps:
- name: Install golang
uses: actions/setup-go@v3
with:
go-version: '>=1.22'
build-nmage-windows:
runs-on: windows-latest
- name: Install assimp-go dylib
run: sudo mkdir -p /usr/local/lib && sudo wget https://github.com/bloeys/assimp-go/releases/download/v0.4.2/libassimp_darwin_amd64.dylib -O /usr/local/lib/libassimp.5.dylib
steps:
- name: Install golang
uses: actions/setup-go@v5
with:
go-version: ">=1.23"
- name: Install assimp-go dll
run: |
New-Item -ItemType Directory -Force -Path C:\Windows\System32
Invoke-WebRequest -Uri "https://github.com/bloeys/assimp-go/releases/download/v0.4.2/libassimp-5.dll" -OutFile "C:\Windows\System32\assimp.dll"
- name: Install SDL2
run: brew install sdl2{,_image,_mixer,_ttf,_gfx} pkg-config
run: |
choco install sdl2 sdl2_image sdl2_ttf sdl2_gfx pkg-config
- name: Clone nmage
run: git clone https://github.com/bloeys/nmage
- name: Build nmage
working-directory: nmage
run: go build .
build-nmage-macos:
runs-on: ${{ matrix.os }}
strategy:
matrix:
# Based on: https://github.com/actions/runner-images?tab=readme-ov-file#available-images
os:
- macos-13 # x86
- macos-14 # Arm
steps:
- name: Install golang
uses: actions/setup-go@v5
with:
go-version: ">=1.23"
- name: Determine architecture
id: arch
run: |
if [ "$(uname -m)" = "arm64" ]; then
echo "arch=arm64" >> "$GITHUB_OUTPUT"
else
echo "arch=amd64" >> "$GITHUB_OUTPUT"
fi
- name: Install assimp-go dylib
run: sudo mkdir -p /usr/local/lib && sudo wget https://github.com/bloeys/assimp-go/releases/download/v0.4.2/libassimp_darwin_${{ steps.arch.outputs.arch }}.dylib -O /usr/local/lib/libassimp.5.dylib
- name: Install SDL2
run: brew install sdl2{,_image,_ttf,_gfx} pkg-config
- name: Clone nmage
run: git clone https://github.com/bloeys/nmage

View File

@ -9,25 +9,48 @@ import (
type BufUsage int
// Full docs for buffer usage can be found here: https://registry.khronos.org/OpenGL-Refpages/gl4/html/glBufferData.xhtml
const (
BufUsage_Unknown BufUsage = iota
//Buffer is set only once and used many times
BufUsage_Static
BufUsage_Static_Draw
//Buffer is changed a lot and used many times
BufUsage_Dynamic
BufUsage_Dynamic_Draw
//Buffer is set only once and used by the GPU at most a few times
BufUsage_Stream
BufUsage_Stream_Draw
BufUsage_Static_Read
BufUsage_Dynamic_Read
BufUsage_Stream_Read
BufUsage_Static_Copy
BufUsage_Dynamic_Copy
BufUsage_Stream_Copy
)
func (b BufUsage) ToGL() uint32 {
switch b {
case BufUsage_Static:
case BufUsage_Static_Draw:
return gl.STATIC_DRAW
case BufUsage_Dynamic:
case BufUsage_Dynamic_Draw:
return gl.DYNAMIC_DRAW
case BufUsage_Stream:
case BufUsage_Stream_Draw:
return gl.STREAM_DRAW
case BufUsage_Static_Read:
return gl.STATIC_READ
case BufUsage_Dynamic_Read:
return gl.DYNAMIC_READ
case BufUsage_Stream_Read:
return gl.STREAM_READ
case BufUsage_Static_Copy:
return gl.STATIC_COPY
case BufUsage_Dynamic_Copy:
return gl.DYNAMIC_COPY
case BufUsage_Stream_Copy:
return gl.STREAM_COPY
}
assert.T(false, fmt.Sprintf("Unexpected BufUsage value '%v'", b))

View File

@ -1,23 +1,23 @@
package buffers
import (
"fmt"
"github.com/bloeys/nmage/assert"
"github.com/bloeys/nmage/logging"
"github.com/go-gl/gl/v4.1-core/gl"
)
//Element represents an element that makes up a buffer (e.g. Vec3 at an offset of 12 bytes)
// Element represents an element that makes up a buffer (e.g. Vec3 at an offset of 12 bytes)
type Element struct {
Offset int
ElementType
}
//ElementType is the type of an element thats makes up a buffer (e.g. Vec3)
type ElementType int
// ElementType is the type of an element thats makes up a buffer (e.g. Vec3)
type ElementType uint8
const (
DataTypeUnknown ElementType = iota
DataTypeUint32
DataTypeInt32
DataTypeFloat32
@ -25,35 +25,54 @@ const (
DataTypeVec2
DataTypeVec3
DataTypeVec4
DataTypeMat2
DataTypeMat3
DataTypeMat4
DataTypeStruct
)
func (dt ElementType) GLType() uint32 {
switch dt {
case DataTypeUint32:
return gl.UNSIGNED_INT
case DataTypeInt32:
return gl.INT
case DataTypeFloat32:
fallthrough
case DataTypeVec2:
fallthrough
case DataTypeVec3:
fallthrough
case DataTypeVec4:
fallthrough
case DataTypeMat2:
fallthrough
case DataTypeMat3:
fallthrough
case DataTypeMat4:
return gl.FLOAT
case DataTypeStruct:
logging.ErrLog.Fatalf("ElementType.GLType of DataTypeStruct is not supported")
return 0
default:
assert.T(false, fmt.Sprintf("Unknown data type passed. DataType '%v'", dt))
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
return 0
}
}
//CompSize returns the size in bytes for one component of the type (e.g. for Vec2 its 4)
// CompSize returns the size in bytes for one component of the type (e.g. for Vec2 its 4).
// Bools return 1, although in layout=std140 its 4
func (dt ElementType) CompSize() int32 {
switch dt {
case DataTypeUint32:
fallthrough
case DataTypeFloat32:
@ -65,15 +84,25 @@ func (dt ElementType) CompSize() int32 {
case DataTypeVec3:
fallthrough
case DataTypeVec4:
fallthrough
case DataTypeMat2:
fallthrough
case DataTypeMat3:
fallthrough
case DataTypeMat4:
return 4
case DataTypeStruct:
logging.ErrLog.Fatalf("ElementType.CompSize of DataTypeStruct is not supported")
return 0
default:
assert.T(false, fmt.Sprintf("Unknown data type passed. DataType '%v'", dt))
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
return 0
}
}
//CompCount returns the number of components in the element (e.g. for Vec2 its 2)
// CompCount returns the number of components in the element (e.g. for Vec2 its 2)
func (dt ElementType) CompCount() int32 {
switch dt {
@ -91,16 +120,28 @@ func (dt ElementType) CompCount() int32 {
case DataTypeVec4:
return 4
case DataTypeMat2:
return 2 * 2
case DataTypeMat3:
return 3 * 3
case DataTypeMat4:
return 4 * 4
case DataTypeStruct:
logging.ErrLog.Fatalf("ElementType.CompCount of DataTypeStruct is not supported")
return 0
default:
assert.T(false, fmt.Sprintf("Unknown data type passed. DataType '%v'", dt))
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
return 0
}
}
//Size returns the total size in bytes (e.g. for vec3 its 3*4=12 bytes)
// Size returns the total size in bytes (e.g. for vec3 its 3*4=12 bytes)
func (dt ElementType) Size() int32 {
switch dt {
case DataTypeUint32:
fallthrough
case DataTypeFloat32:
@ -115,8 +156,123 @@ func (dt ElementType) Size() int32 {
case DataTypeVec4:
return 4 * 4
case DataTypeMat2:
return 2 * 2 * 4
case DataTypeMat3:
return 3 * 3 * 4
case DataTypeMat4:
return 4 * 4 * 4
case DataTypeStruct:
logging.ErrLog.Fatalf("ElementType.Size of DataTypeStruct is not supported")
return 0
default:
assert.T(false, fmt.Sprintf("Unknown data type passed. DataType '%v'", dt))
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
return 0
}
}
func (dt ElementType) GlStd140SizeBytes() uint8 {
switch dt {
case DataTypeUint32:
fallthrough
case DataTypeFloat32:
fallthrough
case DataTypeInt32:
return 4
case DataTypeVec2:
return 4 * 2
case DataTypeVec3:
return 4 * 3
case DataTypeVec4:
return 4 * 4
// Matrices follow: (vec4Alignment) * numColumns
case DataTypeMat2:
return 2 * 2 * 4
case DataTypeMat3:
return 3 * 3 * 4
case DataTypeMat4:
return 4 * 4 * 4
case DataTypeStruct:
logging.ErrLog.Fatalf("ElementType.GlStd140SizeBytes of DataTypeStruct is not supported")
return 0
default:
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
return 0
}
}
func (dt ElementType) GlStd140AlignmentBoundary() uint16 {
switch dt {
case DataTypeUint32:
fallthrough
case DataTypeFloat32:
fallthrough
case DataTypeInt32:
return 4
case DataTypeVec2:
return 8
case DataTypeVec3:
fallthrough
case DataTypeVec4:
fallthrough
case DataTypeMat2:
fallthrough
case DataTypeMat3:
fallthrough
case DataTypeMat4:
fallthrough
case DataTypeStruct:
return 16
default:
assert.T(false, "Unknown data type passed. DataType '%d'", dt)
return 0
}
}
func (dt ElementType) String() string {
switch dt {
case DataTypeUint32:
return "uint32"
case DataTypeFloat32:
return "float32"
case DataTypeInt32:
return "int32"
case DataTypeVec2:
return "Vec2"
case DataTypeVec3:
return "Vec3"
case DataTypeVec4:
return "Vec4"
case DataTypeMat2:
return "Mat2"
case DataTypeMat3:
return "Mat3"
case DataTypeMat4:
return "Mat4"
case DataTypeStruct:
return "Struct"
default:
return "Unknown"
}
}

View File

@ -27,9 +27,9 @@ func (ib *IndexBuffer) SetData(values []uint32) {
ib.IndexBufCount = int32(len(values))
if sizeInBytes == 0 {
gl.BufferData(gl.ELEMENT_ARRAY_BUFFER, 0, gl.Ptr(nil), BufUsage_Static.ToGL())
gl.BufferData(gl.ELEMENT_ARRAY_BUFFER, 0, gl.Ptr(nil), BufUsage_Static_Draw.ToGL())
} else {
gl.BufferData(gl.ELEMENT_ARRAY_BUFFER, sizeInBytes, gl.Ptr(&values[0]), BufUsage_Static.ToGL())
gl.BufferData(gl.ELEMENT_ARRAY_BUFFER, sizeInBytes, gl.Ptr(&values[0]), BufUsage_Static_Draw.ToGL())
}
}

747
buffers/uniform_buffer.go Executable file
View File

@ -0,0 +1,747 @@
package buffers
import (
"math"
"reflect"
"github.com/bloeys/gglm/gglm"
"github.com/bloeys/nmage/assert"
"github.com/bloeys/nmage/logging"
"github.com/go-gl/gl/v4.1-core/gl"
)
type UniformBufferFieldInput struct {
Id uint16
Type ElementType
// Count should be set in case this field is an array of type `[Count]Type`.
// Count=0 is valid and is equivalent to Count=1, which means the type is NOT an array, but a single field.
Count uint16
// Subfields is used when type is a struct, in which case it holds the fields of the struct.
// Ids do not have to be unique across structs.
Subfields []UniformBufferFieldInput
}
type UniformBufferField struct {
Id uint16
AlignedOffset uint16
// Count should be set in case this field is an array of type `[Count]Type`.
// Count=0 is valid and is equivalent to Count=1, which means the type is NOT an array, but a single field.
Count uint16
Type ElementType
// Subfields is used when type is a struct, in which case it holds the fields of the struct.
// Ids do not have to be unique across structs.
Subfields []UniformBufferField
}
type UniformBuffer struct {
Id uint32
// Size is the allocated memory in bytes on the GPU for this uniform buffer
Size uint32
Fields []UniformBufferField
}
func (ub *UniformBuffer) Bind() {
gl.BindBuffer(gl.UNIFORM_BUFFER, ub.Id)
}
func (ub *UniformBuffer) UnBind() {
gl.BindBuffer(gl.UNIFORM_BUFFER, 0)
}
func (ub *UniformBuffer) SetBindPoint(bindPointIndex uint32) {
gl.BindBufferBase(gl.UNIFORM_BUFFER, bindPointIndex, ub.Id)
}
func addUniformBufferFieldsToArray(startAlignedOffset uint16, arrayToAddTo *[]UniformBufferField, fieldsToAdd []UniformBufferFieldInput) (totalSize uint32) {
if len(fieldsToAdd) == 0 {
return 0
}
// This function is recursive so only size the array once
if cap(*arrayToAddTo) == 0 {
*arrayToAddTo = make([]UniformBufferField, 0, len(fieldsToAdd))
}
var alignedOffset uint16 = 0
fieldIdToTypeMap := make(map[uint16]ElementType, len(fieldsToAdd))
for i := 0; i < len(fieldsToAdd); i++ {
f := fieldsToAdd[i]
if f.Count == 0 {
f.Count = 1
}
existingFieldType, ok := fieldIdToTypeMap[f.Id]
assert.T(!ok, "Uniform buffer field id is reused within the same uniform buffer. FieldId=%d was first used on a field with type=%s and then used on a different field with type=%s\n", f.Id, existingFieldType.String(), f.Type.String())
// To understand this take an example. Say we have a total offset of 100 and we are adding a vec4.
// Vec4s must be aligned to a 16 byte boundary but 100 is not (100 % 16 != 0).
//
// To fix this, we take the alignment error which is alignErr=100 % 16=4, but this is error to the nearest
// boundary, which is below the offset.
//
// To get the nearest boundary larger than the offset we can:
// offset + (boundary - alignErr) == 100 + (16 - 4) == 112; 112 % 16 == 0, meaning its a boundary
//
// Note that arrays of scalars/vectors are always aligned to 16 bytes, like a vec4
//
// Official spec and full details in subsection 'Standard Uniform Block Layout' at http://www.opengl.org/registry/specs/ARB/uniform_buffer_object.txt
var alignmentBoundary uint16 = 16
if f.Count == 1 {
alignmentBoundary = f.Type.GlStd140AlignmentBoundary()
}
alignmentError := alignedOffset % alignmentBoundary
if alignmentError != 0 {
alignedOffset += alignmentBoundary - alignmentError
}
newField := UniformBufferField{Id: f.Id, Type: f.Type, AlignedOffset: startAlignedOffset + alignedOffset, Count: f.Count}
*arrayToAddTo = append(*arrayToAddTo, newField)
// Prepare aligned offset for the next field.
//
// Matrices are treated as an array of column vectors, where each column is a vec4,
// that's why we have a multiplier depending on how many columns we have when calculating
// the offset
multiplier := uint16(1)
if f.Type == DataTypeMat2 {
multiplier = 2
} else if f.Type == DataTypeMat3 {
multiplier = 3
} else if f.Type == DataTypeMat4 {
multiplier = 4
}
if f.Type == DataTypeStruct {
subfieldsAlignedOffset := uint16(addUniformBufferFieldsToArray(startAlignedOffset+alignedOffset, arrayToAddTo, f.Subfields))
// Pad structs to 16 byte boundary
padTo16Boundary(&subfieldsAlignedOffset)
alignedOffset += subfieldsAlignedOffset * f.Count
} else {
// Elements advance the alignedOffset by their actual byte size.
// Aligned offset is padded if the place its at is not aligned to the boundary required by the next element.
//
// The exception is structs, because fields after a struct field are always aligned at a 16 byte boundary.
//
// For example, a vec3 starting at offset 80, taking 12 bytes, would put the aligned offset at 92.
// If the next element is a float32 (alignment boundary = 4) then no padding is required and
// the float will start at 92 and end at 96.
// However, if the element after the vec3 is a vec3 (alignment boundary = 16), then it would require
// a padding of 4 bytes so that it can start at 96, which is aligned to 16. In this case the second vec3
// would start at 96 and end at 96+12=108.
alignedOffset = newField.AlignedOffset + uint16(f.Type.GlStd140SizeBytes())*f.Count*multiplier - startAlignedOffset
}
}
return uint32(alignedOffset)
}
func padTo16Boundary[T uint16 | int | int32](val *T) {
alignmentError := *val % 16
if alignmentError != 0 {
*val += 16 - alignmentError
}
}
func (ub *UniformBuffer) getField(fieldId uint16, fieldType ElementType) UniformBufferField {
for i := 0; i < len(ub.Fields); i++ {
f := ub.Fields[i]
if f.Id != fieldId {
continue
}
assert.T(f.Type == fieldType, "Uniform buffer field id is reused within the same uniform buffer. FieldId=%d was first used on a field with type=%v, but is now being used on a field with type=%v\n", fieldId, f.Type.String(), fieldType.String())
return f
}
logging.ErrLog.Panicf("couldn't find uniform buffer field of id=%d and type=%s\n", fieldId, fieldType.String())
return UniformBufferField{}
}
func (ub *UniformBuffer) SetInt32(fieldId uint16, val int32) {
f := ub.getField(fieldId, DataTypeInt32)
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4, gl.Ptr(&val))
}
func (ub *UniformBuffer) SetUint32(fieldId uint16, val uint32) {
f := ub.getField(fieldId, DataTypeUint32)
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4, gl.Ptr(&val))
}
func (ub *UniformBuffer) SetFloat32(fieldId uint16, val float32) {
f := ub.getField(fieldId, DataTypeFloat32)
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4, gl.Ptr(&val))
}
func (ub *UniformBuffer) SetVec2(fieldId uint16, val *gglm.Vec2) {
f := ub.getField(fieldId, DataTypeVec2)
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*2, gl.Ptr(&val.Data[0]))
}
func (ub *UniformBuffer) SetVec3(fieldId uint16, val *gglm.Vec3) {
f := ub.getField(fieldId, DataTypeVec3)
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*3, gl.Ptr(&val.Data[0]))
}
func (ub *UniformBuffer) SetVec4(fieldId uint16, val *gglm.Vec4) {
f := ub.getField(fieldId, DataTypeVec4)
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*4, gl.Ptr(&val.Data[0]))
}
func (ub *UniformBuffer) SetMat2(fieldId uint16, val *gglm.Mat2) {
f := ub.getField(fieldId, DataTypeMat2)
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*4, gl.Ptr(&val.Data[0][0]))
}
func (ub *UniformBuffer) SetMat3(fieldId uint16, val *gglm.Mat3) {
f := ub.getField(fieldId, DataTypeMat3)
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*9, gl.Ptr(&val.Data[0][0]))
}
func (ub *UniformBuffer) SetMat4(fieldId uint16, val *gglm.Mat4) {
f := ub.getField(fieldId, DataTypeMat4)
gl.BufferSubData(gl.UNIFORM_BUFFER, int(f.AlignedOffset), 4*16, gl.Ptr(&val.Data[0][0]))
}
func (ub *UniformBuffer) SetStruct(inputStruct any) {
setStruct(ub.Fields, make([]byte, ub.Size), inputStruct, 1000_000, false, 0)
}
func setStruct(fields []UniformBufferField, buf []byte, inputStruct any, maxFieldsToConsume int, onlyBufWrite bool, writeOffset int) (bytesWritten, fieldsConsumed int) {
if len(fields) == 0 {
return
}
if inputStruct == nil {
logging.ErrLog.Panicf("UniformBuffer.SetStruct called with a value that is nil")
}
structVal := reflect.ValueOf(inputStruct)
if structVal.Kind() != reflect.Struct {
logging.ErrLog.Panicf("UniformBuffer.SetStruct called with a value that is not a struct. Val=%v\n", inputStruct)
}
// Needed because fieldIndex can move faster than struct fields in case of struct fields
structFieldIndex := 0
for fieldIndex := 0; fieldIndex < len(fields) && fieldIndex < maxFieldsToConsume; fieldIndex++ {
ubField := &fields[fieldIndex]
valField := structVal.Field(structFieldIndex)
fieldsConsumed++
structFieldIndex++
kind := valField.Kind()
if kind == reflect.Pointer {
valField = valField.Elem()
}
var elementType reflect.Type
isArray := kind == reflect.Slice || kind == reflect.Array
if isArray {
elementType = valField.Type().Elem()
kind = elementType.Kind()
} else {
elementType = valField.Type()
}
if isArray {
assert.T(valField.Len() == int(ubField.Count), "ubo field of id=%d is an array/slice field of length=%d but got input of length=%d\n", ubField.Id, ubField.Count, valField.Len())
}
typeMatches := false
bytesWritten = int(ubField.AlignedOffset) + writeOffset
switch ubField.Type {
case DataTypeUint32:
typeMatches = elementType.Name() == "uint32"
if typeMatches {
if isArray {
Write32BitIntegerSliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]uint32))
} else {
Write32BitIntegerToByteBuf(buf, &bytesWritten, uint32(valField.Uint()))
}
}
case DataTypeFloat32:
typeMatches = elementType.Name() == "float32"
if typeMatches {
if isArray {
WriteF32SliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]float32))
} else {
WriteF32ToByteBuf(buf, &bytesWritten, float32(valField.Float()))
}
}
case DataTypeInt32:
typeMatches = elementType.Name() == "int32"
if typeMatches {
if isArray {
Write32BitIntegerSliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]int32))
} else {
Write32BitIntegerToByteBuf(buf, &bytesWritten, uint32(valField.Int()))
}
}
case DataTypeVec2:
typeMatches = elementType.Name() == "Vec2"
if typeMatches {
if isArray {
WriteVec2SliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]gglm.Vec2))
} else {
v2 := valField.Interface().(gglm.Vec2)
WriteF32SliceToByteBuf(buf, &bytesWritten, v2.Data[:])
}
}
case DataTypeVec3:
typeMatches = elementType.Name() == "Vec3"
if typeMatches {
if isArray {
WriteVec3SliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]gglm.Vec3))
} else {
v3 := valField.Interface().(gglm.Vec3)
WriteF32SliceToByteBuf(buf, &bytesWritten, v3.Data[:])
}
}
case DataTypeVec4:
typeMatches = elementType.Name() == "Vec4"
if typeMatches {
if isArray {
WriteVec4SliceToByteBufWithAlignment(buf, &bytesWritten, 16, valField.Slice(0, valField.Len()).Interface().([]gglm.Vec4))
} else {
v3 := valField.Interface().(gglm.Vec4)
WriteF32SliceToByteBuf(buf, &bytesWritten, v3.Data[:])
}
}
case DataTypeMat2:
typeMatches = elementType.Name() == "Mat2"
if typeMatches {
if isArray {
m2Arr := valField.Interface().([]gglm.Mat2)
WriteMat2SliceToByteBufWithAlignment(buf, &bytesWritten, 16*2, m2Arr)
} else {
m := valField.Interface().(gglm.Mat2)
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[0][:])
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[1][:])
}
}
case DataTypeMat3:
typeMatches = elementType.Name() == "Mat3"
if typeMatches {
if isArray {
m3Arr := valField.Interface().([]gglm.Mat3)
WriteMat3SliceToByteBufWithAlignment(buf, &bytesWritten, 16*3, m3Arr)
} else {
m := valField.Interface().(gglm.Mat3)
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[0][:])
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[1][:])
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[2][:])
}
}
case DataTypeMat4:
typeMatches = elementType.Name() == "Mat4"
if typeMatches {
if isArray {
m4Arr := valField.Interface().([]gglm.Mat4)
WriteMat4SliceToByteBufWithAlignment(buf, &bytesWritten, 16*4, m4Arr)
} else {
m := valField.Interface().(gglm.Mat4)
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[0][:])
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[1][:])
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[2][:])
WriteF32SliceToByteBuf(buf, &bytesWritten, m.Data[3][:])
}
}
case DataTypeStruct:
typeMatches = kind == reflect.Struct
if typeMatches {
if isArray {
offset := 0
arrSize := valField.Len()
fieldsToUse := fields[fieldIndex+1:]
for i := 0; i < arrSize; i++ {
setStructBytesWritten, setStructFieldsConsumed := setStruct(fieldsToUse, buf, valField.Index(i).Interface(), elementType.NumField(), true, offset*i)
if offset == 0 {
offset = setStructBytesWritten
padTo16Boundary(&offset)
bytesWritten += offset * arrSize
// Tracking consumed fields is needed because if we have a struct inside another struct
// elementType.NumField() will only give us the fields consumed by the first struct,
// but we need to count all fields of all nested structs inside this one
fieldIndex += setStructFieldsConsumed
fieldsConsumed += setStructFieldsConsumed
}
}
} else {
setStructBytesWritten, setStructFieldsConsumed := setStruct(fields[fieldIndex+1:], buf, valField.Interface(), valField.NumField(), true, writeOffset)
bytesWritten += setStructBytesWritten
fieldIndex += setStructFieldsConsumed
fieldsConsumed += setStructFieldsConsumed
}
}
default:
assert.T(false, "Unknown uniform buffer data type passed. DataType '%d'", ubField.Type)
}
if !typeMatches {
logging.ErrLog.Panicf("Struct field ordering and types must match uniform buffer fields, but at field index %d got UniformBufferField=%v but a struct field of type %s\n", fieldIndex, ubField, valField.String())
}
}
if bytesWritten == 0 {
return 0, fieldsConsumed
}
if !onlyBufWrite {
gl.BufferSubData(gl.UNIFORM_BUFFER, 0, bytesWritten, gl.Ptr(&buf[0]))
}
return bytesWritten - int(fields[0].AlignedOffset) - writeOffset, fieldsConsumed
}
func Write32BitIntegerToByteBuf[T uint32 | int32](buf []byte, startIndex *int, val T) {
assert.T(*startIndex+4 <= len(buf), "failed to write uint32/int32 to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d", *startIndex, len(buf))
buf[*startIndex] = byte(val)
buf[*startIndex+1] = byte(val >> 8)
buf[*startIndex+2] = byte(val >> 16)
buf[*startIndex+3] = byte(val >> 24)
*startIndex += 4
}
func Write32BitIntegerSliceToByteBufWithAlignment[T uint32 | int32](buf []byte, startIndex *int, alignmentPerField int, vals []T) {
assert.T(*startIndex+len(vals)*alignmentPerField <= len(buf), "failed to write uint32/int32 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerField, *startIndex, len(buf), len(vals)*alignmentPerField)
for i := 0; i < len(vals); i++ {
val := vals[i]
buf[*startIndex] = byte(val)
buf[*startIndex+1] = byte(val >> 8)
buf[*startIndex+2] = byte(val >> 16)
buf[*startIndex+3] = byte(val >> 24)
*startIndex += alignmentPerField
}
}
func WriteF32ToByteBuf(buf []byte, startIndex *int, val float32) {
assert.T(*startIndex+4 <= len(buf), "failed to write float32 to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d", *startIndex, len(buf))
bits := math.Float32bits(val)
buf[*startIndex] = byte(bits)
buf[*startIndex+1] = byte(bits >> 8)
buf[*startIndex+2] = byte(bits >> 16)
buf[*startIndex+3] = byte(bits >> 24)
*startIndex += 4
}
func WriteF32SliceToByteBuf(buf []byte, startIndex *int, vals []float32) {
assert.T(*startIndex+len(vals)*4 <= len(buf), "failed to write slice of float32 to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", *startIndex, len(buf), len(vals)*4)
for i := 0; i < len(vals); i++ {
bits := math.Float32bits(vals[i])
buf[*startIndex] = byte(bits)
buf[*startIndex+1] = byte(bits >> 8)
buf[*startIndex+2] = byte(bits >> 16)
buf[*startIndex+3] = byte(bits >> 24)
*startIndex += 4
}
}
func WriteF32SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerField int, vals []float32) {
assert.T(*startIndex+len(vals)*alignmentPerField <= len(buf), "failed to write slice of float32 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerField, *startIndex, len(buf), len(vals)*alignmentPerField)
for i := 0; i < len(vals); i++ {
bits := math.Float32bits(vals[i])
buf[*startIndex] = byte(bits)
buf[*startIndex+1] = byte(bits >> 8)
buf[*startIndex+2] = byte(bits >> 16)
buf[*startIndex+3] = byte(bits >> 24)
*startIndex += alignmentPerField
}
}
func WriteVec2SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerVector int, vals []gglm.Vec2) {
assert.T(*startIndex+len(vals)*alignmentPerVector <= len(buf), "failed to write slice of gglm.Vec2 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerVector, *startIndex, len(buf), len(vals)*alignmentPerVector)
for i := 0; i < len(vals); i++ {
bitsX := math.Float32bits(vals[i].X())
bitsY := math.Float32bits(vals[i].Y())
buf[*startIndex] = byte(bitsX)
buf[*startIndex+1] = byte(bitsX >> 8)
buf[*startIndex+2] = byte(bitsX >> 16)
buf[*startIndex+3] = byte(bitsX >> 24)
buf[*startIndex+4] = byte(bitsY)
buf[*startIndex+5] = byte(bitsY >> 8)
buf[*startIndex+6] = byte(bitsY >> 16)
buf[*startIndex+7] = byte(bitsY >> 24)
*startIndex += alignmentPerVector
}
}
func WriteVec3SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerVector int, vals []gglm.Vec3) {
assert.T(*startIndex+len(vals)*alignmentPerVector <= len(buf), "failed to write slice of gglm.Vec3 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerVector, *startIndex, len(buf), len(vals)*alignmentPerVector)
for i := 0; i < len(vals); i++ {
bitsX := math.Float32bits(vals[i].X())
bitsY := math.Float32bits(vals[i].Y())
bitsZ := math.Float32bits(vals[i].Z())
buf[*startIndex] = byte(bitsX)
buf[*startIndex+1] = byte(bitsX >> 8)
buf[*startIndex+2] = byte(bitsX >> 16)
buf[*startIndex+3] = byte(bitsX >> 24)
buf[*startIndex+4] = byte(bitsY)
buf[*startIndex+5] = byte(bitsY >> 8)
buf[*startIndex+6] = byte(bitsY >> 16)
buf[*startIndex+7] = byte(bitsY >> 24)
buf[*startIndex+8] = byte(bitsZ)
buf[*startIndex+9] = byte(bitsZ >> 8)
buf[*startIndex+10] = byte(bitsZ >> 16)
buf[*startIndex+11] = byte(bitsZ >> 24)
*startIndex += alignmentPerVector
}
}
func WriteVec4SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerVector int, vals []gglm.Vec4) {
assert.T(*startIndex+len(vals)*alignmentPerVector <= len(buf), "failed to write slice of gglm.Vec4 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerVector, *startIndex, len(buf), len(vals)*alignmentPerVector)
for i := 0; i < len(vals); i++ {
bitsX := math.Float32bits(vals[i].X())
bitsY := math.Float32bits(vals[i].Y())
bitsZ := math.Float32bits(vals[i].Z())
bitsW := math.Float32bits(vals[i].W())
buf[*startIndex] = byte(bitsX)
buf[*startIndex+1] = byte(bitsX >> 8)
buf[*startIndex+2] = byte(bitsX >> 16)
buf[*startIndex+3] = byte(bitsX >> 24)
buf[*startIndex+4] = byte(bitsY)
buf[*startIndex+5] = byte(bitsY >> 8)
buf[*startIndex+6] = byte(bitsY >> 16)
buf[*startIndex+7] = byte(bitsY >> 24)
buf[*startIndex+8] = byte(bitsZ)
buf[*startIndex+9] = byte(bitsZ >> 8)
buf[*startIndex+10] = byte(bitsZ >> 16)
buf[*startIndex+11] = byte(bitsZ >> 24)
buf[*startIndex+12] = byte(bitsW)
buf[*startIndex+13] = byte(bitsW >> 8)
buf[*startIndex+14] = byte(bitsW >> 16)
buf[*startIndex+15] = byte(bitsW >> 24)
*startIndex += alignmentPerVector
}
}
func WriteMat2SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerMatrix int, vals []gglm.Mat2) {
assert.T(*startIndex+len(vals)*alignmentPerMatrix <= len(buf), "failed to write slice of gglm.Mat2 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerMatrix, *startIndex, len(buf), len(vals)*alignmentPerMatrix)
for i := 0; i < len(vals); i++ {
m := &vals[i]
WriteVec2SliceToByteBufWithAlignment(
buf,
startIndex,
16,
[]gglm.Vec2{
{Data: m.Data[0]},
{Data: m.Data[1]},
},
)
}
}
func WriteMat3SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerMatrix int, vals []gglm.Mat3) {
assert.T(*startIndex+len(vals)*alignmentPerMatrix <= len(buf), "failed to write slice of gglm.Mat3 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerMatrix, *startIndex, len(buf), len(vals)*alignmentPerMatrix)
for i := 0; i < len(vals); i++ {
m := &vals[i]
WriteVec3SliceToByteBufWithAlignment(
buf,
startIndex,
16,
[]gglm.Vec3{
{Data: m.Data[0]},
{Data: m.Data[1]},
{Data: m.Data[2]},
},
)
}
}
func WriteMat4SliceToByteBufWithAlignment(buf []byte, startIndex *int, alignmentPerMatrix int, vals []gglm.Mat4) {
assert.T(*startIndex+len(vals)*alignmentPerMatrix <= len(buf), "failed to write slice of gglm.Mat2 with custom alignment=%d to buffer because the buffer doesn't have enough space. Start index=%d, Buffer length=%d, but needs %d bytes free", alignmentPerMatrix, *startIndex, len(buf), len(vals)*alignmentPerMatrix)
for i := 0; i < len(vals); i++ {
m := &vals[i]
WriteVec4SliceToByteBufWithAlignment(
buf,
startIndex,
16,
[]gglm.Vec4{
{Data: m.Data[0]},
{Data: m.Data[1]},
{Data: m.Data[2]},
{Data: m.Data[3]},
},
)
}
}
func ReflectValueMatchesUniformBufferField(v reflect.Value, ubField *UniformBufferField) bool {
if v.Kind() == reflect.Pointer {
v = v.Elem()
}
switch ubField.Type {
case DataTypeUint32:
t := v.Type()
return t.Name() == "uint32"
case DataTypeFloat32:
t := v.Type()
return t.Name() == "float32"
case DataTypeInt32:
t := v.Type()
return t.Name() == "int32"
case DataTypeVec2:
_, ok := v.Interface().(gglm.Vec2)
return ok
case DataTypeVec3:
_, ok := v.Interface().(gglm.Vec3)
return ok
case DataTypeVec4:
_, ok := v.Interface().(gglm.Vec4)
return ok
case DataTypeMat2:
_, ok := v.Interface().(gglm.Mat2)
return ok
case DataTypeMat3:
_, ok := v.Interface().(gglm.Mat3)
return ok
case DataTypeMat4:
_, ok := v.Interface().(gglm.Mat4)
return ok
default:
assert.T(false, "Unknown uniform buffer data type passed. DataType '%d'", ubField.Type)
return false
}
}
func NewUniformBuffer(fields []UniformBufferFieldInput, usage BufUsage) UniformBuffer {
ub := UniformBuffer{}
ub.Size = addUniformBufferFieldsToArray(0, &ub.Fields, fields)
gl.GenBuffers(1, &ub.Id)
if ub.Id == 0 {
logging.ErrLog.Panicln("Failed to create OpenGL buffer for a uniform buffer")
}
ub.Bind()
gl.BufferData(gl.UNIFORM_BUFFER, int(ub.Size), gl.Ptr(nil), usage.ToGL())
ub.UnBind()
return ub
}

View File

@ -55,7 +55,7 @@ func NewVertexBuffer(layout ...Element) VertexBuffer {
gl.GenBuffers(1, &vb.Id)
if vb.Id == 0 {
logging.ErrLog.Println("Failed to create OpenGL buffer")
logging.ErrLog.Panicln("Failed to create OpenGL buffer")
}
vb.SetLayout(layout...)

View File

@ -107,9 +107,9 @@ func (w *Window) handleInputs() {
}
// If a mouse press event came, always pass it as "mouse held this frame", so we don't miss click-release events that are shorter than 1 frame.
imIo.SetMouseButtonDown(imgui.MouseButtonLeft, isSdlButtonLeftDown)
imIo.SetMouseButtonDown(imgui.MouseButtonRight, isSdlButtonRightDown)
imIo.SetMouseButtonDown(imgui.MouseButtonMiddle, isSdlButtonMiddleDown)
imIo.SetMouseButtonDown(int(imgui.MouseButtonLeft), isSdlButtonLeftDown)
imIo.SetMouseButtonDown(int(imgui.MouseButtonRight), isSdlButtonRightDown)
imIo.SetMouseButtonDown(int(imgui.MouseButtonMiddle), isSdlButtonMiddleDown)
}
func (w *Window) handleWindowResize() {

View File

@ -41,7 +41,6 @@ func Run(g Game, w *Window, rend renderer.Render, ui nmageimgui.ImguiInfo) {
for isRunning {
//PERF: Cache these
width, height = w.SDLWin.GetSize()
fbWidth, fbHeight = w.SDLWin.GLGetDrawableSize()

11
go.mod
View File

@ -1,6 +1,6 @@
module github.com/bloeys/nmage
go 1.22
go 1.23
require github.com/veandco/go-sdl2 v0.4.35
@ -8,12 +8,15 @@ require github.com/go-gl/gl v0.0.0-20211210172815-726fda9656d6
require (
github.com/bloeys/assimp-go v0.4.4
github.com/bloeys/gglm v0.49.0
github.com/bloeys/gglm v0.50.0
)
require (
github.com/AllenDang/cimgui-go v0.0.0-20230720025235-f2ff398a66b2
github.com/AllenDang/cimgui-go v0.0.0-20240912193335-545751598105
github.com/mandykoh/prism v0.35.1
)
require github.com/mandykoh/go-parallel v0.1.0 // indirect
require (
github.com/mandykoh/go-parallel v0.1.0 // indirect
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842 // indirect
)

8
go.sum
View File

@ -1,9 +1,11 @@
github.com/AllenDang/cimgui-go v0.0.0-20230720025235-f2ff398a66b2 h1:3HA/5qD8Rimxz/y1sLyVaM7ws1dzjXzMt4hOBiwHggo=
github.com/AllenDang/cimgui-go v0.0.0-20230720025235-f2ff398a66b2/go.mod h1:iNfbIyOBN8k3XScMxULbrwYbPsXEAUD0Jb6UwrspQb8=
github.com/AllenDang/cimgui-go v0.0.0-20240912193335-545751598105 h1:bhXqv2EG5YCLdgkLSFCpqeVz4cCoNbi4RDFrHrwxQ1o=
github.com/AllenDang/cimgui-go v0.0.0-20240912193335-545751598105/go.mod h1:CYfBRenCaNtSvKVzChYh6gswUSo6c5IUcYeV6eCCRw0=
github.com/bloeys/assimp-go v0.4.4 h1:Yn5e/RpE0Oes0YMBy8O7KkwAO4R/RpgrZPJCt08dVIU=
github.com/bloeys/assimp-go v0.4.4/go.mod h1:my3yRxT7CfOztmvi+0svmwbaqw0KFrxaHxncoyaEIP0=
github.com/bloeys/gglm v0.49.0 h1:YtbyHpszYhjnxw7KVV0LaCdBktRMqfGx/i37EMomxsE=
github.com/bloeys/gglm v0.49.0/go.mod h1:qwJQ0WzV191wAMwlGicbfbChbKoSedMk7gFFX6GnyOk=
github.com/bloeys/gglm v0.50.0 h1:DlGLp9z8KMNx+hNR6PjnPmC0HjDRC19QwAKL1iwhOxs=
github.com/bloeys/gglm v0.50.0/go.mod h1:5s2U/NiOrtJyrSup1j8wK+QOBmGIO03ub0LHMvuNSK8=
github.com/go-gl/gl v0.0.0-20211210172815-726fda9656d6 h1:zDw5v7qm4yH7N8C8uWd+8Ii9rROdgWxQuGoJ9WDXxfk=
github.com/go-gl/gl v0.0.0-20211210172815-726fda9656d6/go.mod h1:9YTyiznxEY1fVinfM7RvRcjRHbw2xLBJ3AAGIT0I4Nw=
github.com/mandykoh/go-parallel v0.1.0 h1:7vJMNMC4dsbgZdkAb2A8tV5ENY1v7VxIO1wzQWZoT8k=
@ -15,6 +17,8 @@ github.com/veandco/go-sdl2 v0.4.35/go.mod h1:OROqMhHD43nT4/i9crJukyVecjPNYYuCofe
github.com/yuin/goldmark v1.4.13/go.mod h1:6yULJ656Px+3vBD8DxQVa3kxgyrAnzto9xy5taEt/CY=
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20210921155107-089bfa567519/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842 h1:vr/HnozRka3pE4EsMEg1lgkXJkTFJCVUX+S/ZT6wYzM=
golang.org/x/exp v0.0.0-20240506185415-9bf2ced13842/go.mod h1:XtvwrStGgqGPLc4cjQfWqZHG1YFdYs6swckp8vpsjnc=
golang.org/x/image v0.5.0 h1:5JMiNunQeQw++mMOz48/ISeNu3Iweh/JaZU8ZLqHRrI=
golang.org/x/image v0.5.0/go.mod h1:FVC7BI/5Ym8R25iw5OLsgshdUBbT1h5jZTpA+mvAdZ4=
golang.org/x/mod v0.6.0-dev.0.20220419223038-86c51ed26bb4/go.mod h1:jJ57K6gSWd91VN4djpZkiMVwK6gcyfeH4XE8wZrZaV4=

533
main.go
View File

@ -38,16 +38,16 @@ import (
- Create VAO struct independent from VBO to support multi-VBO use cases (e.g. instancing) ✅
- Normals maps ✅
- HDR ✅
- Fix bad point light acne
- UBO support
- Cascaded shadow mapping
- Fix bad point light acne
- UBO support
- Skeletal animations
- (?) Cascaded shadow mapping
- In some cases we DO want input even when captured by UI. We need two systems within input package, one filtered and one not✅
- (?) Support OpenGL 4.1 and 4.6, and default to 4.6
- Proper model loading (i.e. load model by reading all its meshes, textures, and so on together)
- Renderer batching
- Scene graph
- Separate engine loop from rendering loop? or leave it to the user?
- Abstract keys enum away from sdl?
- (?) Separate engine loop from rendering loop
- Frustum culling
- Proper Asset loading system
- Material system editor with fields automatically extracted from the shader
@ -60,10 +60,16 @@ type DirLight struct {
}
var (
renderDirLightShadows = true
renderPointLightShadows = true
renderSpotLightShadows = true
dirLightSize float32 = 30
dirLightNear float32 = 0.1
dirLightFar float32 = 30
dirLightPos = gglm.NewVec3(0, 10, 0)
pointLightRadiusToFarPlaneRatio float32 = 1.25
)
func (d *DirLight) GetProjViewMat() gglm.Mat4 {
@ -82,19 +88,34 @@ func (d *DirLight) GetProjViewMat() gglm.Mat4 {
return *projMat.Mul(&viewMat)
}
// Check https://wiki.ogre3d.org/tiki-index.php?page=-Point+Light+Attenuation for values
// Based on: https://lisyarus.github.io/blog/posts/point-light-attenuation.html
type PointLight struct {
Pos gglm.Vec3
DiffuseColor gglm.Vec3
SpecularColor gglm.Vec3
// @TODO
Radius float32
Radius float32
Falloff float32
Constant float32
Linear float32
Quadratic float32
// MaxBias is the max shadow bias applied for this light.
// A usual value is 0.05
MaxBias float32
// NearPlane is the distance where if the pixel
// is closer to the light than this distance, no shadow will be casted.
//
// This helps not produce shadows from within objects.
// Same idea a camera near plane.
NearPlane float32
// Far plane is the max distance at which shadows from this
// light will show.
//
// This should be a bit bigger than the radius, as an object
// at the edge of the radius should still cast a shadow, and
// so this shadow will be further than the radius.
//
// Something like 'FarPlane=Radius*1.25' might work.
FarPlane float32
}
@ -186,22 +207,71 @@ func (s *SpotLight) OuterCutoffCos() float32 {
return gglm.Cos32(s.OuterCutoffRad)
}
type GlobalMatricesUboData struct {
CamPos gglm.Vec3
ProjViewMat gglm.Mat4
}
type DirLightUboData struct {
Dir gglm.Vec3
DiffuseColor gglm.Vec3
SpecularColor gglm.Vec3
}
type PointLightUboData struct {
Pos gglm.Vec3
DiffuseColor gglm.Vec3
SpecularColor gglm.Vec3
Radius float32
Falloff float32
MaxBias float32
NearPlane float32
FarPlane float32
}
type SpotLightUboData struct {
Pos gglm.Vec3
Dir gglm.Vec3
DiffuseColor gglm.Vec3
SpecularColor gglm.Vec3
InnerCutoff float32
OuterCutoff float32
}
type LightsUboData struct {
DirLight DirLightUboData
PointLights [POINT_LIGHT_COUNT]PointLightUboData
SpotLights [SPOT_LIGHT_COUNT]SpotLightUboData
AmbientColor gglm.Vec3
}
const (
// These must match the shader values
POINT_LIGHT_COUNT = 8
SPOT_LIGHT_COUNT = 4
UNSCALED_WINDOW_WIDTH = 1280
UNSCALED_WINDOW_HEIGHT = 720
PROFILE_CPU = true
PROFILE_MEM = true
PROFILE_CPU = false
PROFILE_MEM = false
FRAME_TIME_MS_SAMPLES = 10000
)
var (
globalMatricesUboData GlobalMatricesUboData
globalMatricesUbo buffers.UniformBuffer
lightsUboData LightsUboData
lightsUbo buffers.UniformBuffer
frameTimesMsIndex int = 0
frameTimesMs []float32 = make([]float32, 0, FRAME_TIME_MS_SAMPLES)
camSpeed float32 = 15
mouseSensitivity float32 = 0.5
camMoveSpeed float32 = 15
camRotSpeed float32 = 0.5
window engine.Window
@ -264,58 +334,48 @@ var (
dpiScaling float32
// Light settings
ambientColor = gglm.NewVec3(0, 0, 0)
dirLightDir = gglm.NewVec3(0, -0.5, -0.8)
// Lights
dirLight = DirLight{
Dir: *dirLightDir.Normalize(),
DiffuseColor: gglm.NewVec3(1, 1, 1),
DiffuseColor: gglm.NewVec3(63.0/255, 63.0/255, 63.0/255),
SpecularColor: gglm.NewVec3(1, 1, 1),
}
pointLights = [...]PointLight{
pointLights = [POINT_LIGHT_COUNT]PointLight{
{
Pos: gglm.NewVec3(0, 2, -2),
Pos: gglm.NewVec3(0, 4, -3),
DiffuseColor: gglm.NewVec3(1, 0, 0),
SpecularColor: gglm.NewVec3(1, 1, 1),
// These values are for 50m range
Constant: 1.0,
Linear: 0.09,
Quadratic: 0.032,
FarPlane: 25,
},
{
Pos: gglm.NewVec3(0, -5, 0),
DiffuseColor: gglm.NewVec3(0, 1, 0),
SpecularColor: gglm.NewVec3(1, 1, 1),
Constant: 1.0,
Linear: 0.09,
Quadratic: 0.032,
FarPlane: 25,
Radius: 10,
Falloff: 1.0,
MaxBias: 0.05,
NearPlane: 0.2,
FarPlane: 20 * pointLightRadiusToFarPlaneRatio,
},
{
Pos: gglm.NewVec3(5, 0, 0),
DiffuseColor: gglm.NewVec3(1, 1, 1),
SpecularColor: gglm.NewVec3(1, 1, 1),
Constant: 1.0,
Linear: 0.09,
Quadratic: 0.032,
FarPlane: 25,
Radius: 10,
Falloff: 1.0,
MaxBias: 0.05,
NearPlane: 0.2,
FarPlane: 20 * pointLightRadiusToFarPlaneRatio,
},
{
Pos: gglm.NewVec3(-3, 4, 3),
DiffuseColor: gglm.NewVec3(1, 1, 1),
SpecularColor: gglm.NewVec3(1, 1, 1),
Constant: 1.0,
Linear: 0.09,
Quadratic: 0.032,
FarPlane: 25,
Radius: 10,
Falloff: 1.0,
MaxBias: 0.05,
NearPlane: 0.2,
FarPlane: 20 * pointLightRadiusToFarPlaneRatio,
},
}
spotLightDir0 = gglm.NewVec3(1.5, -0.9, 0)
spotLights = [...]SpotLight{
spotLights = [SPOT_LIGHT_COUNT]SpotLight{
{
Pos: gglm.NewVec3(-4, 7, 5),
Dir: *spotLightDir0.Normalize(),
@ -412,9 +472,10 @@ func (g *Game) handleWindowEvents(e sdl.Event) {
g.WinWidth = e.Data1
g.WinHeight = e.Data2
cam.AspectRatio = float32(g.WinWidth) / float32(g.WinHeight)
cam.AspectRatio = float32(g.WinWidth) / float32(g.WinHeight)
cam.Update()
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
}
}
@ -461,7 +522,7 @@ func (g *Game) Init() {
// Camera
winWidth, winHeight := g.Win.SDLWin.GetSize()
camPos := gglm.NewVec3(0, 0, 10)
camPos := gglm.NewVec3(0, 10, 20)
camForward := gglm.NewVec3(0, 0, -1)
camWorldUp := gglm.NewVec3(0, 1, 0)
cam = camera.NewPerspective(
@ -552,12 +613,8 @@ func (g *Game) Init() {
whiteMat.SetUnifInt32("material.specular", int32(materials.TextureSlot_Specular))
whiteMat.SetUnifInt32("material.normal", int32(materials.TextureSlot_Normal))
whiteMat.SetUnifInt32("material.emission", int32(materials.TextureSlot_Emission))
whiteMat.SetUnifVec3("ambientColor", &ambientColor)
whiteMat.SetUnifFloat32("material.shininess", whiteMat.Shininess)
whiteMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
whiteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
whiteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
whiteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
whiteMat.SetUnifInt32("dirLightShadowMap", int32(materials.TextureSlot_ShadowMap1))
whiteMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
whiteMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
@ -570,12 +627,8 @@ func (g *Game) Init() {
containerMat.SetUnifInt32("material.specular", int32(materials.TextureSlot_Specular))
containerMat.SetUnifInt32("material.normal", int32(materials.TextureSlot_Normal))
containerMat.SetUnifInt32("material.emission", int32(materials.TextureSlot_Emission))
containerMat.SetUnifVec3("ambientColor", &ambientColor)
containerMat.SetUnifFloat32("material.shininess", containerMat.Shininess)
containerMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
containerMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
containerMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
containerMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
containerMat.SetUnifInt32("dirLightShadowMap", int32(materials.TextureSlot_ShadowMap1))
containerMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
containerMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
@ -588,12 +641,8 @@ func (g *Game) Init() {
groundMat.SetUnifInt32("material.specular", int32(materials.TextureSlot_Specular))
groundMat.SetUnifInt32("material.normal", int32(materials.TextureSlot_Normal))
groundMat.SetUnifInt32("material.emission", int32(materials.TextureSlot_Emission))
groundMat.SetUnifVec3("ambientColor", &ambientColor)
groundMat.SetUnifFloat32("material.shininess", groundMat.Shininess)
groundMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
groundMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
groundMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
groundMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
groundMat.SetUnifInt32("dirLightShadowMap", int32(materials.TextureSlot_ShadowMap1))
groundMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
groundMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
@ -605,12 +654,8 @@ func (g *Game) Init() {
palleteMat.SetUnifInt32("material.specular", int32(materials.TextureSlot_Specular))
palleteMat.SetUnifInt32("material.normal", int32(materials.TextureSlot_Normal))
palleteMat.SetUnifInt32("material.emission", int32(materials.TextureSlot_Emission))
palleteMat.SetUnifVec3("ambientColor", &ambientColor)
palleteMat.SetUnifFloat32("material.shininess", palleteMat.Shininess)
palleteMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
palleteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
palleteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
palleteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
palleteMat.SetUnifInt32("dirLightShadowMap", int32(materials.TextureSlot_ShadowMap1))
palleteMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
palleteMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
@ -643,17 +688,89 @@ func (g *Game) Init() {
// We don't actually care about the values here because the quad is hardcoded in the shader,
// but we just want to have a vao with 6 vertices and uv0 so opengl can be called properly
screenQuadVbo := buffers.NewVertexBuffer(buffers.Element{ElementType: buffers.DataTypeVec3}, buffers.Element{ElementType: buffers.DataTypeVec2})
screenQuadVbo.SetData(make([]float32, 6), buffers.BufUsage_Static)
screenQuadVbo.SetData(make([]float32, 6), buffers.BufUsage_Static_Draw)
screenQuadVao = buffers.NewVertexArray()
screenQuadVao.AddVertexBuffer(screenQuadVbo)
// Fbos and lights
g.initFbos()
g.updateLights()
// Ubos
g.initUbos()
// Initial camera update
cam.Update()
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
lightsUboData.AmbientColor = gglm.NewVec3(20.0/255, 20.0/255, 20.0/255)
g.applyLightUpdates()
}
func (g *Game) initUbos() {
globalMatricesUbo = buffers.NewUniformBuffer(
[]buffers.UniformBufferFieldInput{
{Id: 0, Type: buffers.DataTypeVec3},
{Id: 1, Type: buffers.DataTypeMat4},
},
buffers.BufUsage_Dynamic_Draw,
)
globalMatricesUbo.SetBindPoint(0)
groundMat.SetUniformBlockBindingPoint("GlobalMatrices", 0)
whiteMat.SetUniformBlockBindingPoint("GlobalMatrices", 0)
containerMat.SetUniformBlockBindingPoint("GlobalMatrices", 0)
palleteMat.SetUniformBlockBindingPoint("GlobalMatrices", 0)
lightsUbo = buffers.NewUniformBuffer(
[]buffers.UniformBufferFieldInput{
// Dir light
{Id: 0, Type: buffers.DataTypeStruct,
Subfields: []buffers.UniformBufferFieldInput{
{Id: 1, Type: buffers.DataTypeVec3}, // 12 00
{Id: 2, Type: buffers.DataTypeVec3}, // 12 16
{Id: 3, Type: buffers.DataTypeVec3}, // 12 32
},
},
// Point lights
{Id: 5, Type: buffers.DataTypeStruct,
Count: POINT_LIGHT_COUNT,
Subfields: []buffers.UniformBufferFieldInput{
{Id: 6, Type: buffers.DataTypeVec3}, // 12 48
{Id: 7, Type: buffers.DataTypeVec3}, // 12 64
{Id: 8, Type: buffers.DataTypeVec3}, // 12 80
{Id: 9, Type: buffers.DataTypeFloat32}, // 04 92
{Id: 10, Type: buffers.DataTypeFloat32}, // 04 96
{Id: 11, Type: buffers.DataTypeFloat32}, // 04 100
{Id: 12, Type: buffers.DataTypeFloat32}, // 04 104
{Id: 13, Type: buffers.DataTypeFloat32}, // 04 108
},
},
// Spot lights
{Id: 14, Type: buffers.DataTypeStruct,
Count: SPOT_LIGHT_COUNT,
Subfields: []buffers.UniformBufferFieldInput{
{Id: 15, Type: buffers.DataTypeVec3}, // 12 112
{Id: 16, Type: buffers.DataTypeVec3}, // 12 128
{Id: 17, Type: buffers.DataTypeVec3}, // 12 144
{Id: 18, Type: buffers.DataTypeVec3}, // 12 160
{Id: 19, Type: buffers.DataTypeFloat32}, // 04 172
{Id: 20, Type: buffers.DataTypeFloat32}, // 04 176
},
},
// Ambient
{Id: 21, Type: buffers.DataTypeVec3}, // 12 192
},
buffers.BufUsage_Dynamic_Draw,
)
// fmt.Printf("\n==Lights UBO (id=%d)==\nSize=%d\nFields: %+v\n\n", lightsUbo.Id, lightsUbo.Size, lightsUbo.Fields)
lightsUbo.SetBindPoint(1)
groundMat.SetUniformBlockBindingPoint("Lights", 1)
whiteMat.SetUniformBlockBindingPoint("Lights", 1)
containerMat.SetUniformBlockBindingPoint("Lights", 1)
palleteMat.SetUniformBlockBindingPoint("Lights", 1)
}
func (g *Game) initFbos() {
@ -676,7 +793,7 @@ func (g *Game) initFbos() {
assert.T(demoFbo.IsComplete(), "Demo fbo is not complete after init")
// Depth map fbo
dirLightDepthMapFbo = buffers.NewFramebuffer(2048, 2048)
dirLightDepthMapFbo = buffers.NewFramebuffer(4096, 4096)
dirLightDepthMapFbo.SetNoColorBuffer()
dirLightDepthMapFbo.NewDepthAttachment(
buffers.FramebufferAttachmentType_Texture,
@ -686,7 +803,7 @@ func (g *Game) initFbos() {
assert.T(dirLightDepthMapFbo.IsComplete(), "Depth map fbo is not complete after init")
// Point light depth map fbo
pointLightDepthMapFbo = buffers.NewFramebuffer(512, 512)
pointLightDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
pointLightDepthMapFbo.SetNoColorBuffer()
pointLightDepthMapFbo.NewDepthCubemapArrayAttachment(
buffers.FramebufferAttachmentDataFormat_DepthF32,
@ -696,7 +813,7 @@ func (g *Game) initFbos() {
assert.T(pointLightDepthMapFbo.IsComplete(), "Point light depth map fbo is not complete after init")
// Spot light depth map fbo
spotLightDepthMapFbo = buffers.NewFramebuffer(512, 512)
spotLightDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
spotLightDepthMapFbo.SetNoColorBuffer()
spotLightDepthMapFbo.NewDepthTextureArrayAttachment(
buffers.FramebufferAttachmentDataFormat_DepthF32,
@ -720,9 +837,12 @@ func (g *Game) initFbos() {
assert.T(hdrFbo.IsComplete(), "Hdr fbo is not complete after init")
}
func (g *Game) updateLights() {
// applyLightUpdates updates materials and light ubo using
// data from the game's light structs
func (g *Game) applyLightUpdates() {
// Directional light
lightsUboData.DirLight = DirLightUboData(dirLight)
whiteMat.ShadowMapTex1 = dirLightDepthMapFbo.Attachments[0].Id
containerMat.ShadowMapTex1 = dirLightDepthMapFbo.Attachments[0].Id
groundMat.ShadowMapTex1 = dirLightDepthMapFbo.Attachments[0].Id
@ -732,42 +852,7 @@ func (g *Game) updateLights() {
for i := 0; i < len(pointLights); i++ {
p := &pointLights[i]
indexString := "pointLights[" + strconv.Itoa(i) + "]"
whiteMat.SetUnifVec3(indexString+".pos", &p.Pos)
containerMat.SetUnifVec3(indexString+".pos", &p.Pos)
groundMat.SetUnifVec3(indexString+".pos", &p.Pos)
palleteMat.SetUnifVec3(indexString+".pos", &p.Pos)
whiteMat.SetUnifVec3(indexString+".diffuseColor", &p.DiffuseColor)
containerMat.SetUnifVec3(indexString+".diffuseColor", &p.DiffuseColor)
groundMat.SetUnifVec3(indexString+".diffuseColor", &p.DiffuseColor)
palleteMat.SetUnifVec3(indexString+".diffuseColor", &p.DiffuseColor)
whiteMat.SetUnifVec3(indexString+".specularColor", &p.SpecularColor)
containerMat.SetUnifVec3(indexString+".specularColor", &p.SpecularColor)
groundMat.SetUnifVec3(indexString+".specularColor", &p.SpecularColor)
palleteMat.SetUnifVec3(indexString+".specularColor", &p.SpecularColor)
whiteMat.SetUnifFloat32(indexString+".constant", p.Constant)
containerMat.SetUnifFloat32(indexString+".constant", p.Constant)
groundMat.SetUnifFloat32(indexString+".constant", p.Constant)
palleteMat.SetUnifFloat32(indexString+".constant", p.Constant)
whiteMat.SetUnifFloat32(indexString+".linear", p.Linear)
containerMat.SetUnifFloat32(indexString+".linear", p.Linear)
groundMat.SetUnifFloat32(indexString+".linear", p.Linear)
palleteMat.SetUnifFloat32(indexString+".linear", p.Linear)
whiteMat.SetUnifFloat32(indexString+".quadratic", p.Quadratic)
containerMat.SetUnifFloat32(indexString+".quadratic", p.Quadratic)
groundMat.SetUnifFloat32(indexString+".quadratic", p.Quadratic)
palleteMat.SetUnifFloat32(indexString+".quadratic", p.Quadratic)
whiteMat.SetUnifFloat32(indexString+".farPlane", p.FarPlane)
containerMat.SetUnifFloat32(indexString+".farPlane", p.FarPlane)
groundMat.SetUnifFloat32(indexString+".farPlane", p.FarPlane)
palleteMat.SetUnifFloat32(indexString+".farPlane", p.FarPlane)
lightsUboData.PointLights[i] = PointLightUboData(*p)
}
whiteMat.CubemapArrayTex = pointLightDepthMapFbo.Attachments[0].Id
@ -782,43 +867,24 @@ func (g *Game) updateLights() {
innerCutoffCos := l.InnerCutoffCos()
outerCutoffCos := l.OuterCutoffCos()
indexString := "spotLights[" + strconv.Itoa(i) + "]"
whiteMat.SetUnifVec3(indexString+".pos", &l.Pos)
containerMat.SetUnifVec3(indexString+".pos", &l.Pos)
groundMat.SetUnifVec3(indexString+".pos", &l.Pos)
palleteMat.SetUnifVec3(indexString+".pos", &l.Pos)
whiteMat.SetUnifVec3(indexString+".dir", &l.Dir)
containerMat.SetUnifVec3(indexString+".dir", &l.Dir)
groundMat.SetUnifVec3(indexString+".dir", &l.Dir)
palleteMat.SetUnifVec3(indexString+".dir", &l.Dir)
whiteMat.SetUnifVec3(indexString+".diffuseColor", &l.DiffuseColor)
containerMat.SetUnifVec3(indexString+".diffuseColor", &l.DiffuseColor)
groundMat.SetUnifVec3(indexString+".diffuseColor", &l.DiffuseColor)
palleteMat.SetUnifVec3(indexString+".diffuseColor", &l.DiffuseColor)
whiteMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
containerMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
groundMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
palleteMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
whiteMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
containerMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
groundMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
palleteMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
whiteMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
containerMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
groundMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
palleteMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
lightsUboData.SpotLights[i] = SpotLightUboData{
Pos: l.Pos,
Dir: l.Dir,
DiffuseColor: l.DiffuseColor,
SpecularColor: l.SpecularColor,
InnerCutoff: innerCutoffCos,
OuterCutoff: outerCutoffCos,
}
}
whiteMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
containerMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
groundMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
palleteMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
// Apply changes
lightsUbo.Bind()
lightsUbo.SetStruct(lightsUboData)
}
func (g *Game) Update() {
@ -830,11 +896,10 @@ func (g *Game) Update() {
g.updateCameraLookAround()
g.updateCameraPos()
g.showDebugWindow()
globalMatricesUboData.CamPos = cam.Pos
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
if input.KeyClicked(sdl.K_F4) {
logging.InfoLog.Printf("Pos: %s; Forward: %s; |Forward|: %f\n", cam.Pos.String(), cam.Forward.String(), cam.Forward.Mag())
}
g.showDebugWindow()
}
func (g *Game) showDebugWindow() {
@ -843,7 +908,7 @@ func (g *Game) showDebugWindow() {
imgui.Begin("Debug controls")
imgui.PushStyleColorVec4(imgui.ColText, imgui.NewColor(1, 1, 0, 1).Value)
imgui.PushStyleColorVec4(imgui.ColText, imgui.NewColor(1, 1, 0, 1).FieldValue)
imgui.LabelText("FPS", fmt.Sprint(timing.GetAvgFPS()))
imgui.PopStyleColor()
@ -858,7 +923,7 @@ func (g *Game) showDebugWindow() {
}
}
imgui.PlotLinesFloatPtrV("Frame Times", frameTimesMs, int32(len(frameTimesMs)), 0, "", 0, 16, imgui.Vec2{Y: 200}, 4)
imgui.PlotLinesFloatPtrV("Frame Times", frameTimesMs, int32(len(frameTimesMs)), 0, "", 0, 16, imgui.Vec2{Y: 50}, 4)
imgui.Spacing()
@ -877,20 +942,22 @@ func (g *Game) showDebugWindow() {
imgui.Text("HDR")
imgui.Checkbox("Enable HDR", &hdrRendering)
if imgui.DragFloat("Exposure", &hdrExposure) {
if imgui.DragFloatV("Exposure", &hdrExposure, 0.1, -10, 100, "%.3f", imgui.SliderFlagsNone) {
tonemappedScreenQuadMat.SetUnifFloat32("exposure", hdrExposure)
}
imgui.Spacing()
//
// Lights
//
updateLights := false
// Ambient light
imgui.Text("Ambient Light")
if imgui.DragFloat3("Ambient Color", &ambientColor.Data) {
whiteMat.SetUnifVec3("ambientColor", &ambientColor)
containerMat.SetUnifVec3("ambientColor", &ambientColor)
groundMat.SetUnifVec3("ambientColor", &ambientColor)
palleteMat.SetUnifVec3("ambientColor", &ambientColor)
if imgui.ColorEdit3("Ambient Color", &lightsUboData.AmbientColor.Data) {
updateLights = true
}
imgui.Spacing()
@ -901,30 +968,29 @@ func (g *Game) showDebugWindow() {
imgui.Checkbox("Render Directional Light Shadows", &renderDirLightShadows)
if imgui.DragFloat3("Direction", &dirLight.Dir.Data) {
whiteMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
containerMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
groundMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
palleteMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
updateLights = true
}
if imgui.DragFloat3("Diffuse Color", &dirLight.DiffuseColor.Data) {
whiteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
containerMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
groundMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
palleteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
if imgui.ColorEdit3("Diffuse Color", &dirLight.DiffuseColor.Data) {
updateLights = true
}
if imgui.DragFloat3("Specular Color", &dirLight.SpecularColor.Data) {
whiteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
containerMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
groundMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
palleteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
if imgui.ColorEdit3("Specular Color", &dirLight.SpecularColor.Data) {
updateLights = true
}
imgui.DragFloat3("dPos", &dirLightPos.Data)
imgui.DragFloat("dSize", &dirLightSize)
imgui.DragFloat("dNear", &dirLightNear)
imgui.DragFloat("dFar", &dirLightFar)
if imgui.DragFloat3("dPos", &dirLightPos.Data) {
updateLights = true
}
if imgui.DragFloat("dSize", &dirLightSize) {
updateLights = true
}
if imgui.DragFloat("dNear", &dirLightNear) {
updateLights = true
}
if imgui.DragFloat("dFar", &dirLightFar) {
updateLights = true
}
imgui.Spacing()
@ -953,27 +1019,29 @@ func (g *Game) showDebugWindow() {
continue
}
indexString := "pointLights[" + indexNumString + "]"
if imgui.DragFloat3("Pos", &pl.Pos.Data) {
whiteMat.SetUnifVec3(indexString+".pos", &pl.Pos)
containerMat.SetUnifVec3(indexString+".pos", &pl.Pos)
groundMat.SetUnifVec3(indexString+".pos", &pl.Pos)
palleteMat.SetUnifVec3(indexString+".pos", &pl.Pos)
updateLights = true
}
if imgui.DragFloat3("Diffuse Color", &pl.DiffuseColor.Data) {
whiteMat.SetUnifVec3(indexString+".diffuseColor", &pl.DiffuseColor)
containerMat.SetUnifVec3(indexString+".diffuseColor", &pl.DiffuseColor)
groundMat.SetUnifVec3(indexString+".diffuseColor", &pl.DiffuseColor)
palleteMat.SetUnifVec3(indexString+".diffuseColor", &pl.DiffuseColor)
if imgui.ColorEdit3("Diffuse Color", &pl.DiffuseColor.Data) {
updateLights = true
}
if imgui.DragFloat3("Specular Color", &pl.SpecularColor.Data) {
whiteMat.SetUnifVec3(indexString+".specularColor", &pl.SpecularColor)
containerMat.SetUnifVec3(indexString+".specularColor", &pl.SpecularColor)
groundMat.SetUnifVec3(indexString+".specularColor", &pl.SpecularColor)
palleteMat.SetUnifVec3(indexString+".specularColor", &pl.SpecularColor)
if imgui.ColorEdit3("Specular Color", &pl.SpecularColor.Data) {
updateLights = true
}
if imgui.DragFloatV("Falloff", &pl.Falloff, 0.1, 0, 100, "%.3f", imgui.SliderFlagsNone) {
updateLights = true
}
if imgui.DragFloatV("Radius", &pl.Radius, 0.2, 0, 500, "%.3f", imgui.SliderFlagsNone) {
updateLights = true
pl.FarPlane = pl.Radius * pointLightRadiusToFarPlaneRatio
}
if imgui.DragFloatV("Max Bias", &pl.MaxBias, 0.01, 0, 10, "%.3f", imgui.SliderFlagsNone) {
updateLights = true
}
imgui.TreePop()
@ -996,54 +1064,34 @@ func (g *Game) showDebugWindow() {
continue
}
indexString := "spotLights[" + indexNumString + "]"
if imgui.DragFloat3("Pos", &l.Pos.Data) {
whiteMat.SetUnifVec3(indexString+".pos", &l.Pos)
containerMat.SetUnifVec3(indexString+".pos", &l.Pos)
groundMat.SetUnifVec3(indexString+".pos", &l.Pos)
palleteMat.SetUnifVec3(indexString+".pos", &l.Pos)
updateLights = true
}
if imgui.DragFloat3("Dir", &l.Dir.Data) {
whiteMat.SetUnifVec3(indexString+".dir", &l.Dir)
containerMat.SetUnifVec3(indexString+".dir", &l.Dir)
groundMat.SetUnifVec3(indexString+".dir", &l.Dir)
palleteMat.SetUnifVec3(indexString+".dir", &l.Dir)
updateLights = true
}
if imgui.DragFloat3("Diffuse Color", &l.DiffuseColor.Data) {
whiteMat.SetUnifVec3(indexString+".diffuseColor", &l.DiffuseColor)
containerMat.SetUnifVec3(indexString+".diffuseColor", &l.DiffuseColor)
groundMat.SetUnifVec3(indexString+".diffuseColor", &l.DiffuseColor)
palleteMat.SetUnifVec3(indexString+".diffuseColor", &l.DiffuseColor)
if imgui.ColorEdit3("Diffuse Color", &l.DiffuseColor.Data) {
updateLights = true
}
if imgui.DragFloat3("Specular Color", &l.SpecularColor.Data) {
whiteMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
containerMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
groundMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
palleteMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
if imgui.ColorEdit3("Specular Color", &l.SpecularColor.Data) {
updateLights = true
}
if imgui.DragFloat("Inner Cutoff Radians", &l.InnerCutoffRad) {
cos := l.InnerCutoffCos()
whiteMat.SetUnifFloat32(indexString+".innerCutoff", cos)
containerMat.SetUnifFloat32(indexString+".innerCutoff", cos)
groundMat.SetUnifFloat32(indexString+".innerCutoff", cos)
palleteMat.SetUnifFloat32(indexString+".innerCutoff", cos)
}
if imgui.DragFloat("Outer Cutoff Radians", &l.OuterCutoffRad) {
cos := l.OuterCutoffCos()
whiteMat.SetUnifFloat32(indexString+".outerCutoff", cos)
containerMat.SetUnifFloat32(indexString+".outerCutoff", cos)
groundMat.SetUnifFloat32(indexString+".outerCutoff", cos)
palleteMat.SetUnifFloat32(indexString+".outerCutoff", cos)
if imgui.DragFloatRange2V(
"Cutoff Radians",
&l.InnerCutoffRad,
&l.OuterCutoffRad,
0.1,
0,
0,
"%.3f",
"%.3f",
imgui.SliderFlagsNone,
) {
updateLights = true
}
imgui.DragFloat("Spot Near Plane", &l.NearPlane)
@ -1055,6 +1103,10 @@ func (g *Game) showDebugWindow() {
imgui.EndListBox()
}
if updateLights {
g.applyLightUpdates()
}
// Demo fbo
imgui.Text("Demo Framebuffer")
imgui.Checkbox("Show FBO##0", &renderToDemoFbo)
@ -1084,11 +1136,15 @@ func (g *Game) updateCameraLookAround() {
return
}
const MAX_MOUSE_MOVE = 300
mouseX = gglm.Clamp(mouseX, -MAX_MOUSE_MOVE, MAX_MOUSE_MOVE)
mouseY = gglm.Clamp(mouseY, -MAX_MOUSE_MOVE, MAX_MOUSE_MOVE)
// Yaw
yaw += float32(mouseX) * mouseSensitivity * timing.DT()
yaw += float32(mouseX) * camRotSpeed * timing.DT()
// Pitch
pitch += float32(-mouseY) * mouseSensitivity * timing.DT()
pitch += float32(-mouseY) * camRotSpeed * timing.DT()
if pitch > 1.5 {
pitch = 1.5
}
@ -1097,10 +1153,7 @@ func (g *Game) updateCameraLookAround() {
pitch = -1.5
}
// Update cam forward
cam.UpdateRotation(pitch, yaw)
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
}
func (g *Game) updateCameraPos() {
@ -1114,35 +1167,30 @@ func (g *Game) updateCameraPos() {
// Forward and backward
if input.KeyDown(sdl.K_w) {
cam.Pos.Add(cam.Forward.Clone().Scale(camSpeed * camSpeedScale * timing.DT()))
cam.Pos.Add(cam.Forward.Clone().Scale(camMoveSpeed * camSpeedScale * timing.DT()))
update = true
} else if input.KeyDown(sdl.K_s) {
cam.Pos.Add(cam.Forward.Clone().Scale(-camSpeed * camSpeedScale * timing.DT()))
cam.Pos.Add(cam.Forward.Clone().Scale(-camMoveSpeed * camSpeedScale * timing.DT()))
update = true
}
// Left and right
if input.KeyDown(sdl.K_d) {
cross := gglm.Cross(&cam.Forward, &cam.WorldUp)
cam.Pos.Add(cross.Normalize().Scale(camSpeed * camSpeedScale * timing.DT()))
cam.Pos.Add(cross.Normalize().Scale(camMoveSpeed * camSpeedScale * timing.DT()))
update = true
} else if input.KeyDown(sdl.K_a) {
cross := gglm.Cross(&cam.Forward, &cam.WorldUp)
cam.Pos.Add(cross.Normalize().Scale(-camSpeed * camSpeedScale * timing.DT()))
cam.Pos.Add(cross.Normalize().Scale(-camMoveSpeed * camSpeedScale * timing.DT()))
update = true
}
if update {
cam.Update()
updateAllProjViewMats(cam.ProjMat, cam.ViewMat)
}
}
var (
renderDirLightShadows = true
renderPointLightShadows = true
renderSpotLightShadows = true
rotatingCubeSpeedDeg1 float32 = 45
rotatingCubeSpeedDeg2 float32 = 120
rotatingCubeSpeedDeg3 float32 = 120
@ -1153,10 +1201,8 @@ var (
func (g *Game) Render() {
whiteMat.SetUnifVec3("camPos", &cam.Pos)
containerMat.SetUnifVec3("camPos", &cam.Pos)
groundMat.SetUnifVec3("camPos", &cam.Pos)
palleteMat.SetUnifVec3("camPos", &cam.Pos)
globalMatricesUbo.Bind()
globalMatricesUbo.SetStruct(globalMatricesUboData)
rotatingCubeTrMat1.Rotate(rotatingCubeSpeedDeg1*gglm.Deg2Rad*timing.DT(), 0, 1, 0)
rotatingCubeTrMat2.Rotate(rotatingCubeSpeedDeg2*gglm.Deg2Rad*timing.DT(), 1, 1, 0)
@ -1409,12 +1455,9 @@ func (g *Game) DeInit() {
func updateAllProjViewMats(projMat, viewMat gglm.Mat4) {
projViewMat := *projMat.Clone().Mul(&viewMat)
globalMatricesUboData.ProjViewMat = projViewMat
unlitMat.SetUnifMat4("projViewMat", &projViewMat)
whiteMat.SetUnifMat4("projViewMat", &projViewMat)
containerMat.SetUnifMat4("projViewMat", &projViewMat)
groundMat.SetUnifMat4("projViewMat", &projViewMat)
palleteMat.SetUnifMat4("projViewMat", &projViewMat)
debugDepthMat.SetUnifMat4("projViewMat", &projViewMat)
// Update skybox projViewMat

View File

@ -124,6 +124,21 @@ func (m *Material) UnBind() {
gl.UseProgram(0)
}
func (m *Material) SetUniformBlockBindingPoint(uniformBlockName string, bindPointIndex uint32) {
nullStr := gl.Str(uniformBlockName + "\x00")
index := gl.GetUniformBlockIndex(m.ShaderProg.Id, nullStr)
assert.T(
index != gl.INVALID_INDEX,
"SetUniformBlockBindingPoint for material=%s (matId=%d; shaderId=%d) failed because the uniform block=%s wasn't found",
m.Name,
m.Id,
m.ShaderProg.Id,
uniformBlockName,
)
gl.UniformBlockBinding(m.ShaderProg.Id, index, bindPointIndex)
}
func (m *Material) GetAttribLoc(attribName string) int32 {
loc, ok := m.AttribLocs[attribName]
@ -131,7 +146,8 @@ func (m *Material) GetAttribLoc(attribName string) int32 {
return loc
}
loc = gl.GetAttribLocation(m.ShaderProg.Id, gl.Str(attribName+"\x00"))
name := gl.Str(attribName + "\x00")
loc = gl.GetAttribLocation(m.ShaderProg.Id, name)
assert.T(loc != -1, "Attribute '"+attribName+"' doesn't exist on material "+m.Name)
m.AttribLocs[attribName] = loc
return loc
@ -144,7 +160,8 @@ func (m *Material) GetUnifLoc(uniformName string) int32 {
return loc
}
loc = gl.GetUniformLocation(m.ShaderProg.Id, gl.Str(uniformName+"\x00"))
name := gl.Str(uniformName + "\x00")
loc = gl.GetUniformLocation(m.ShaderProg.Id, name)
assert.T(loc != -1, "Uniform '"+uniformName+"' doesn't exist on material "+m.Name)
m.UnifLocs[uniformName] = loc
return loc

View File

@ -151,7 +151,7 @@ func NewMesh(name, modelPath string, postProcessFlags asig.PostProcess) (Mesh, e
indexBufData = append(indexBufData, indices...)
}
vbo.SetData(vertexBufData, buffers.BufUsage_Static)
vbo.SetData(vertexBufData, buffers.BufUsage_Static_Draw)
ibo.SetData(indexBufData)
mesh.Vao.AddVertexBuffer(vbo)

View File

@ -14,33 +14,25 @@ layout(location=3) in vec2 vertUV0In;
layout(location=4) in vec3 vertColorIn;
//
// Uniforms
// UBOs
//
uniform vec3 camPos;
uniform mat4 modelMat;
uniform mat3 normalMat;
uniform mat4 projViewMat;
uniform mat4 dirLightProjViewMat;
uniform mat4 spotLightProjViewMats[NUM_SPOT_LIGHTS];
struct DirLight {
vec3 dir;
vec3 diffuseColor;
vec3 specularColor;
sampler2D shadowMap;
};
uniform DirLight dirLight;
uniform sampler2D dirLightShadowMap;
struct PointLight {
vec3 pos;
vec3 diffuseColor;
vec3 specularColor;
float constant;
float linear;
float quadratic;
float radius;
float falloff;
float maxBias;
float nearPlane;
float farPlane;
};
uniform PointLight pointLights[NUM_POINT_LIGHTS];
struct SpotLight {
vec3 pos;
@ -50,7 +42,25 @@ struct SpotLight {
float innerCutoff;
float outerCutoff;
};
uniform SpotLight spotLights[NUM_SPOT_LIGHTS];
layout (std140) uniform GlobalMatrices {
vec3 camPos;
mat4 projViewMat;
};
layout (std140) uniform Lights {
DirLight dirLight;
PointLight pointLights[NUM_POINT_LIGHTS];
SpotLight spotLights[NUM_SPOT_LIGHTS];
vec3 ambientColor;
};
//
// Uniforms
//
uniform mat4 modelMat;
uniform mat4 dirLightProjViewMat;
uniform mat4 spotLightProjViewMats[NUM_SPOT_LIGHTS];
//
// Outputs
@ -154,20 +164,19 @@ struct DirLight {
vec3 dir;
vec3 diffuseColor;
vec3 specularColor;
sampler2D shadowMap;
};
uniform DirLight dirLight;
uniform sampler2D dirLightShadowMap;
struct PointLight {
vec3 pos;
vec3 diffuseColor;
vec3 specularColor;
float constant;
float linear;
float quadratic;
float radius;
float falloff;
float maxBias;
float nearPlane;
float farPlane;
};
uniform PointLight pointLights[NUM_POINT_LIGHTS];
uniform samplerCubeArray pointLightCubeShadowMaps;
struct SpotLight {
@ -178,10 +187,19 @@ struct SpotLight {
float innerCutoff;
float outerCutoff;
};
uniform SpotLight spotLights[NUM_SPOT_LIGHTS];
uniform sampler2DArray spotLightShadowMaps;
uniform vec3 ambientColor = vec3(0.2, 0.2, 0.2);
layout (std140) uniform GlobalMatrices {
vec3 camPos;
mat4 projViewMat;
};
layout (std140) uniform Lights {
DirLight dirLight;
PointLight pointLights[NUM_POINT_LIGHTS];
SpotLight spotLights[NUM_SPOT_LIGHTS];
vec3 ambientColor;
};
//
// Outputs
@ -248,34 +266,88 @@ vec3 CalcDirLight()
vec3 finalSpecular = specularAmount * dirLight.specularColor * specularTexColor.rgb;
// Shadow
float shadow = CalcDirShadow(dirLight.shadowMap, lightDir);
float shadow = CalcDirShadow(dirLightShadowMap, lightDir);
return (finalDiffuse + finalSpecular) * (1 - shadow);
}
float CalcPointShadow(int lightIndex, vec3 worldLightPos, vec3 tangentLightDir, float farPlane) {
float CalcPointShadow(int lightIndex, vec3 worldLightPos, vec3 tangentLightDir, float maxBias, float nearPlane, float farPlane) {
vec3 lightToFrag = fragPos - worldLightPos;
// Get depth of current fragment
float currentDepth = length(lightToFrag);
if (currentDepth < nearPlane) {
return 0;
}
float closestDepth = texture(pointLightCubeShadowMaps, vec4(lightToFrag, lightIndex)).r;
// We stored depth in the cubemap in the range [0, 1], so now we move back to [0, farPlane]
closestDepth *= farPlane;
// Get depth of current fragment
float currentDepth = length(lightToFrag);
float bias = max(maxBias * (1 - dot(normalizedVertNorm, tangentLightDir)), 0.005);
float bias = max(0.05 * (1 - dot(normalizedVertNorm, tangentLightDir)), 0.005);
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
float shadow = currentDepth - bias > closestDepth ? 1 : 0;
return shadow;
}
//
// The following point light attenuation formulas
// are from https://lisyarus.github.io/blog/posts/point-light-attenuation.html
//
// I found them more intuitive than the standard implementation and it also ensures
// we have zero light at the selected distance.
//
float sqr(float x)
{
return x * x;
}
// This version doesn't have a harsh cutoff at radius
float AttenuateNoCusp(float dist, float radius, float falloff)
{
// Since we only use this as attenuation and max intensity defines
// the max output value, anything more than 1 would increase
// the output of the light, which I don't think makes sense for
// our attenuation purposes.
//
// Seems to me this can be done simply by increasing color values above 255.
//
// Forcing to 1 for now.
#define MAX_INTENSITY 1
float s = dist / radius;
if (s >= 1.0)
return 0.0;
float s2 = sqr(s);
return MAX_INTENSITY * sqr(1 - s2) / (1 + falloff * s2);
}
// This version has a harsh/immediate cutoff at radius
float AttenuateCusp(float dist, float radius, float falloff)
{
#define MAX_INTENSITY 1
float s = dist / radius;
if (s >= 1.0)
return 0.0;
float s2 = sqr(s);
return MAX_INTENSITY * sqr(1 - s2) / (1 + falloff * s);
}
vec3 CalcPointLight(PointLight pointLight, int lightIndex)
{
// Ignore unset lights
if (pointLight.constant == 0){
// Ignore inactive lights
if (pointLight.radius == 0){
return vec3(0);
}
@ -293,10 +365,10 @@ vec3 CalcPointLight(PointLight pointLight, int lightIndex)
// Attenuation
float distToLight = length(tangentLightPos - tangentFragPos);
float attenuation = 1 / (pointLight.constant + pointLight.linear * distToLight + pointLight.quadratic * (distToLight * distToLight));
float attenuation = AttenuateNoCusp(distToLight, pointLight.radius, pointLight.falloff);
// Shadow
float shadow = CalcPointShadow(lightIndex, pointLight.pos, tangentLightDir, pointLight.farPlane);
float shadow = CalcPointShadow(lightIndex, pointLight.pos, tangentLightDir, pointLight.maxBias, pointLight.nearPlane, pointLight.farPlane);
return (finalDiffuse + finalSpecular) * attenuation * (1 - shadow);
}
@ -343,7 +415,10 @@ float CalcSpotShadow(vec3 tangentLightDir, int lightIndex)
vec3 CalcSpotLight(SpotLight light, int lightIndex)
{
if (light.innerCutoff == 0)
// The inner/outer cutoffs are cosine values,
// which means a value of 1 is mainly produced when the input
// is 0 degrees or radians. cos(180) will also be 1, but that's too much :)
if (light.innerCutoff == 1)
return vec3(0);
vec3 tangentLightDir = tangentSpotLightDirections[lightIndex];

View File

@ -1,6 +1,17 @@
package nmageimgui
import (
"unsafe"
// The following is included just so we can get
// the c imports and cgo configs defined here: https://github.com/AllenDang/cimgui-go/blob/main/sdlbackend/sdl_backend.go
//
// This is needed because AllenDang/cimgui-go links sdl2 statically, which requires us
// to explicitly define all the libs it needs, which isn't normally needed if we were dynamically linking.
//
// Without this, we get compilation errors as sdl2 can't find libs it relies on.
_ "github.com/AllenDang/cimgui-go/sdlbackend"
imgui "github.com/AllenDang/cimgui-go"
"github.com/bloeys/gglm/gglm"
"github.com/bloeys/nmage/materials"
@ -129,7 +140,7 @@ func (i *ImguiInfo) AddFontTTF(fontPath string, fontSize float32, fontConfig *im
fontConfigToUse := imgui.NewFontConfig()
if fontConfig != nil {
fontConfigToUse = *fontConfig
fontConfigToUse = fontConfig
}
glyphRangesToUse := imgui.NewGlyphRange()
@ -141,13 +152,13 @@ func (i *ImguiInfo) AddFontTTF(fontPath string, fontSize float32, fontConfig *im
a := imIO.Fonts()
f := a.AddFontFromFileTTFV(fontPath, fontSize, fontConfigToUse, glyphRangesToUse.Data())
pixels, width, height, _ := a.GetTextureDataAsAlpha8()
pixels, width, height, _ := a.TextureDataAsAlpha8()
gl.ActiveTexture(gl.TEXTURE0)
gl.BindTexture(gl.TEXTURE_2D, *i.TexID)
gl.TexImage2D(gl.TEXTURE_2D, 0, gl.RED, int32(width), int32(height), 0, gl.RED, gl.UNSIGNED_BYTE, pixels)
return f
return *f
}
const DefaultImguiShader = `
@ -212,7 +223,7 @@ func NewImGui(shaderPath string) ImguiInfo {
}
imguiInfo := ImguiInfo{
ImCtx: imgui.CreateContext(),
ImCtx: *imgui.CreateContext(),
Mat: imguiMat,
TexID: new(uint32),
}
@ -233,11 +244,12 @@ func NewImGui(shaderPath string) ImguiInfo {
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR)
gl.PixelStorei(gl.UNPACK_ROW_LENGTH, 0)
pixels, width, height, _ := io.Fonts().GetTextureDataAsAlpha8()
pixels, width, height, _ := io.Fonts().TextureDataAsAlpha8()
gl.TexImage2D(gl.TEXTURE_2D, 0, gl.RED, int32(width), int32(height), 0, gl.RED, gl.UNSIGNED_BYTE, pixels)
// Store our identifier
io.Fonts().SetTexID(imgui.TextureID(imguiInfo.TexID))
io.Fonts().SetTexID(imgui.TextureID{Data: uintptr(unsafe.Pointer(imguiInfo.TexID))})
//Shader attributes
imguiInfo.Mat.Bind()