Compare commits

...

8 Commits

Author SHA1 Message Date
4d8ccdaf56 Captured/uncaptured mode in input package+comments 2024-04-20 11:53:06 +04:00
a131e1b52d Add todo regarding input package 2024-04-20 11:14:29 +04:00
f35c217d73 Spotlight shadows 2024-04-16 10:34:30 +04:00
fbfcbaa156 Point light shadows+cubemap array fbo+cleanup 2024-04-15 10:49:18 +04:00
c4b1dd1b3d Geometry shader support+omnidirectional depth map shader+improvements 2024-04-15 05:09:07 +04:00
a5bea5a661 Cubemap depth fbo attachments 2024-04-15 04:16:44 +04:00
22ba9ca891 Fix comment 2024-04-15 03:22:25 +04:00
92855c52f9 Shader fixes 2024-04-15 03:19:40 +04:00
13 changed files with 1074 additions and 273 deletions

View File

@ -19,7 +19,8 @@ import (
type ColorFormat int
const (
ColorFormat_RGBA8 ColorFormat = iota
ColorFormat_Unknown ColorFormat = iota
ColorFormat_RGBA8
)
type Texture struct {

View File

@ -10,8 +10,10 @@ import (
type BufUsage int
const (
BufUsage_Unknown BufUsage = iota
//Buffer is set only once and used many times
BufUsage_Static BufUsage = iota
BufUsage_Static
//Buffer is changed a lot and used many times
BufUsage_Dynamic
//Buffer is set only once and used by the GPU at most a few times

View File

@ -1,6 +1,7 @@
package buffers
import (
"github.com/bloeys/nmage/assert"
"github.com/bloeys/nmage/logging"
"github.com/go-gl/gl/v4.1-core/gl"
)
@ -10,7 +11,10 @@ type FramebufferAttachmentType int32
const (
FramebufferAttachmentType_Unknown FramebufferAttachmentType = iota
FramebufferAttachmentType_Texture
FramebufferAttachmentType_Texture_Array
FramebufferAttachmentType_Renderbuffer
FramebufferAttachmentType_Cubemap
FramebufferAttachmentType_Cubemap_Array
)
func (f FramebufferAttachmentType) IsValid() bool {
@ -18,7 +22,13 @@ func (f FramebufferAttachmentType) IsValid() bool {
switch f {
case FramebufferAttachmentType_Texture:
fallthrough
case FramebufferAttachmentType_Texture_Array:
fallthrough
case FramebufferAttachmentType_Renderbuffer:
fallthrough
case FramebufferAttachmentType_Cubemap:
fallthrough
case FramebufferAttachmentType_Cubemap_Array:
return true
default:
@ -169,6 +179,14 @@ func (fbo *Framebuffer) NewColorAttachment(
logging.ErrLog.Fatalf("failed creating color attachment for framebuffer due to unknown attachment type. Type=%d\n", attachType)
}
if attachType == FramebufferAttachmentType_Cubemap || attachType == FramebufferAttachmentType_Cubemap_Array {
logging.ErrLog.Fatalf("failed creating color attachment because cubemaps can not be color attachments (at least in this implementation. You might be able to do it manually)\n")
}
if attachType == FramebufferAttachmentType_Texture_Array {
logging.ErrLog.Fatalf("failed creating color attachment because texture arrays can not be color attachments (implementation can be updated to support it or you can do it manually)\n")
}
if !attachFormat.IsColorFormat() {
logging.ErrLog.Fatalf("failed creating color attachment for framebuffer due to attachment data format not being a valid color type. Data format=%d\n", attachFormat)
}
@ -256,6 +274,14 @@ func (fbo *Framebuffer) NewDepthAttachment(
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer due to attachment data format not being a valid depth-stencil type. Data format=%d\n", attachFormat)
}
if attachType == FramebufferAttachmentType_Cubemap_Array {
logging.ErrLog.Fatalf("failed creating cubemap array depth attachment because 'NewDepthCubemapArrayAttachment' must be used for that\n")
}
if attachType == FramebufferAttachmentType_Texture_Array {
logging.ErrLog.Fatalf("failed creating texture array depth attachment because 'NewDepthTextureArrayAttachment' must be used for that\n")
}
a := FramebufferAttachment{
Type: attachType,
Format: attachFormat,
@ -304,6 +330,30 @@ func (fbo *Framebuffer) NewDepthAttachment(
// Attach to fbo
gl.FramebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, a.Id)
} else if attachType == FramebufferAttachmentType_Cubemap {
// Create cubemap
gl.GenTextures(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindTexture(gl.TEXTURE_CUBE_MAP, a.Id)
for i := 0; i < 6; i++ {
gl.TexImage2D(uint32(gl.TEXTURE_CUBE_MAP_POSITIVE_X+i), 0, attachFormat.GlInternalFormat(), int32(fbo.Width), int32(fbo.Height), 0, attachFormat.GlFormat(), gl.FLOAT, nil)
}
gl.TexParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_WRAP_R, gl.CLAMP_TO_EDGE)
gl.BindTexture(gl.TEXTURE_2D, 0)
// Attach to fbo
gl.FramebufferTexture(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, a.Id, 0)
}
fbo.UnBind()
@ -311,6 +361,125 @@ func (fbo *Framebuffer) NewDepthAttachment(
fbo.Attachments = append(fbo.Attachments, a)
}
func (fbo *Framebuffer) NewDepthCubemapArrayAttachment(
attachFormat FramebufferAttachmentDataFormat,
numCubemaps int32,
) {
if fbo.HasDepthAttachment() {
logging.ErrLog.Fatalf("failed creating cubemap array depth attachment for framebuffer because a depth attachment already exists\n")
}
if !attachFormat.IsDepthFormat() {
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer due to attachment data format not being a valid depth-stencil type. Data format=%d\n", attachFormat)
}
a := FramebufferAttachment{
Type: FramebufferAttachmentType_Cubemap_Array,
Format: attachFormat,
}
fbo.Bind()
// Create cubemap array
gl.GenTextures(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindTexture(gl.TEXTURE_CUBE_MAP_ARRAY, a.Id)
gl.TexImage3D(
gl.TEXTURE_CUBE_MAP_ARRAY,
0,
attachFormat.GlInternalFormat(),
int32(fbo.Width),
int32(fbo.Height),
6*numCubemaps,
0,
attachFormat.GlFormat(),
gl.FLOAT,
nil,
)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP_ARRAY, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP_ARRAY, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP_ARRAY, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP_ARRAY, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP_ARRAY, gl.TEXTURE_WRAP_R, gl.CLAMP_TO_EDGE)
gl.BindTexture(gl.TEXTURE_2D, 0)
// Attach to fbo
gl.FramebufferTexture(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, a.Id, 0)
fbo.UnBind()
fbo.ClearFlags |= gl.DEPTH_BUFFER_BIT
fbo.Attachments = append(fbo.Attachments, a)
}
func (fbo *Framebuffer) NewDepthTextureArrayAttachment(
attachFormat FramebufferAttachmentDataFormat,
numTextures int32,
) {
if fbo.HasDepthAttachment() {
logging.ErrLog.Fatalf("failed creating texture array depth attachment for framebuffer because a depth attachment already exists\n")
}
if !attachFormat.IsDepthFormat() {
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer due to attachment data format not being a valid depth-stencil type. Data format=%d\n", attachFormat)
}
a := FramebufferAttachment{
Type: FramebufferAttachmentType_Texture_Array,
Format: attachFormat,
}
fbo.Bind()
// Create cubemap array
gl.GenTextures(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindTexture(gl.TEXTURE_2D_ARRAY, a.Id)
gl.TexImage3D(
gl.TEXTURE_2D_ARRAY,
0,
attachFormat.GlInternalFormat(),
int32(fbo.Width),
int32(fbo.Height),
numTextures,
0,
attachFormat.GlFormat(),
gl.FLOAT,
nil,
)
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
// This is so that any sampling outside the depth map gives a full depth value.
// Useful for example when doing shadow maps where we want things outside
// the range of the texture to not show shadow
borderColor := []float32{1, 1, 1, 1}
gl.TexParameterfv(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_BORDER_COLOR, &borderColor[0])
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_BORDER)
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_BORDER)
gl.BindTexture(gl.TEXTURE_2D_ARRAY, 0)
// Attach to fbo
gl.FramebufferTexture(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, a.Id, 0)
fbo.UnBind()
fbo.ClearFlags |= gl.DEPTH_BUFFER_BIT
fbo.Attachments = append(fbo.Attachments, a)
}
func (fbo *Framebuffer) NewDepthStencilAttachment(
attachType FramebufferAttachmentType,
attachFormat FramebufferAttachmentDataFormat,
@ -374,6 +543,28 @@ func (fbo *Framebuffer) NewDepthStencilAttachment(
fbo.Attachments = append(fbo.Attachments, a)
}
// SetCubemapArrayLayerFace 'binds' a single face of a cubemap from the cubemap
// array to the fbo, such that rendering only affects that one face and the others inaccessible.
//
// If this is not called, the default is that the entire cubemap array and all the faces in it
// are bound and available for use when binding the fbo.
func (fbo *Framebuffer) SetCubemapArrayLayerFace(layerFace int32) {
for i := 0; i < len(fbo.Attachments); i++ {
a := &fbo.Attachments[i]
if a.Type != FramebufferAttachmentType_Cubemap_Array {
continue
}
assert.T(a.Format.IsDepthFormat(), "SetCubemapFromArray called but a cubemap array is set on a color attachment, which is not currently handled. Code must be updated!")
gl.FramebufferTextureLayer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, a.Id, 0, layerFace)
return
}
logging.ErrLog.Fatalf("SetCubemapFromArray failed because no cubemap array attachment was found on fbo. Fbo=%+v\n", *fbo)
}
func (fbo *Framebuffer) Delete() {
if fbo.Id == 0 {

View File

@ -33,25 +33,12 @@ type Window struct {
func (w *Window) handleInputs() {
input.EventLoopStart()
imIo := imgui.CurrentIO()
imguiCaptureMouse := imIo.WantCaptureMouse()
imguiCaptureKeyboard := imIo.WantCaptureKeyboard()
// These two are to fix a bug where state isn't cleared
// even after imgui captures the keyboard/mouse.
//
// For example, if player is moving due to key held and then imgui captures the keyboard,
// the player keeps moving even when the key is no longer pressed because the input system never
// receives the key up event.
if imguiCaptureMouse {
input.ClearMouseState()
}
if imguiCaptureKeyboard {
input.ClearKeyboardState()
}
input.EventLoopStart(imguiCaptureMouse, imguiCaptureKeyboard)
for event := sdl.PollEvent(); event != nil; event = sdl.PollEvent() {
@ -65,18 +52,12 @@ func (w *Window) handleInputs() {
case *sdl.MouseWheelEvent:
if !imguiCaptureMouse {
input.HandleMouseWheelEvent(e)
}
input.HandleMouseWheelEvent(e)
imIo.AddMouseWheelDelta(float32(e.X), float32(e.Y))
case *sdl.KeyboardEvent:
if !imguiCaptureKeyboard {
input.HandleKeyboardEvent(e)
}
input.HandleKeyboardEvent(e)
imIo.AddKeyEvent(nmageimgui.SdlScancodeToImGuiKey(e.Keysym.Scancode), e.Type == sdl.KEYDOWN)
// Send modifier key updates to imgui
@ -101,10 +82,7 @@ func (w *Window) handleInputs() {
case *sdl.MouseButtonEvent:
if !imguiCaptureMouse {
input.HandleMouseBtnEvent(e)
}
input.HandleMouseBtnEvent(e)
isPressed := e.State == sdl.PRESSED
if e.Button == sdl.BUTTON_LEFT {
@ -117,9 +95,7 @@ func (w *Window) handleInputs() {
case *sdl.MouseMotionEvent:
if !imguiCaptureMouse {
input.HandleMouseMotionEvent(e)
}
input.HandleMouseMotionEvent(e)
case *sdl.WindowEvent:
@ -217,6 +193,7 @@ func createWindow(title string, x, y, width, height int32, flags WindowFlags, re
if err != nil {
return nil, err
}
win := &Window{
SDLWin: sdlWin,
EventCallbacks: make([]func(sdl.Event), 0),
@ -233,6 +210,10 @@ func createWindow(title string, x, y, width, height int32, flags WindowFlags, re
return nil, err
}
// Get rid of the blinding white startup screen (unfortunately there is still one frame of white)
gl.Clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT | gl.STENCIL_BUFFER_BIT)
sdlWin.GLSwap()
return win, err
}
@ -254,6 +235,7 @@ func initOpenGL() error {
gl.BlendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA)
gl.ClearColor(0, 0, 0, 1)
return nil
}

View File

@ -1,6 +1,23 @@
// The input package provides an interface to mouse and keyboard inputs
// like key clicks and releases, along with some higher level constructs like
// pressed/released this frames, double clicks, and normalized inputs.
//
// The input package has two sets of functions for most cases, where one
// is in the form 'xy' and the other 'xyCaptured'. The captured form
// always returns normal events even if the mouse or keyboard are captured
// by the UI system. The 'xy' form however will return zero/false if the
// respective input device is currently captured (with the exception of mouse position, that is always correctly returned).
//
// For most cases, you want to use the 'xy' form. For example, you only want to receive
// key down events for game character movement when the UI isn't capturing the keyboard,
// because otherwise the character will move while typing in a UI textbox.
//
// The functions IsMouseCaptured and IsKeyboardCaptured are also available.
package input
import "github.com/veandco/go-sdl2/sdl"
import (
"github.com/veandco/go-sdl2/sdl"
)
type keyState struct {
Key sdl.Keycode
@ -31,15 +48,22 @@ type mouseWheelState struct {
}
var (
keyMap = make(map[sdl.Keycode]keyState)
mouseBtnMap = make(map[int]mouseBtnState)
mouseMotion = mouseMotionState{}
mouseWheel = mouseWheelState{}
quitRequested bool
mouseWheel = mouseWheelState{}
mouseMotion = mouseMotionState{}
mouseBtnMap = make(map[int]mouseBtnState)
keyMap = make(map[sdl.Keycode]keyState)
isQuitRequested bool
isMouseCaptured bool
isKeyboardCaptured bool
)
func EventLoopStart() {
func EventLoopStart(mouseGotCaptured, keyboardGotCaptured bool) {
isMouseCaptured = mouseGotCaptured
isKeyboardCaptured = keyboardGotCaptured
// Update per-frame state
for k, v := range keyMap {
v.IsPressedThisFrame = false
v.IsReleasedThisFrame = false
@ -59,7 +83,7 @@ func EventLoopStart() {
mouseWheel.XDelta = 0
mouseWheel.YDelta = 0
quitRequested = false
isQuitRequested = false
}
func ClearKeyboardState() {
@ -73,11 +97,19 @@ func ClearMouseState() {
}
func HandleQuitEvent(e *sdl.QuitEvent) {
quitRequested = true
isQuitRequested = true
}
func IsMouseCaptured() bool {
return isMouseCaptured
}
func IsKeyboardCaptured() bool {
return isKeyboardCaptured
}
func IsQuitClicked() bool {
return quitRequested
return isQuitRequested
}
func HandleKeyboardEvent(e *sdl.KeyboardEvent) {
@ -123,18 +155,36 @@ func HandleMouseWheelEvent(e *sdl.MouseWheelEvent) {
mouseWheel.YDelta = e.Y
}
// GetMousePos returns the window coordinates of the mouse
// GetMousePos returns the window coordinates of the mouse regardless of whether the mouse is captured or not
func GetMousePos() (x, y int32) {
return mouseMotion.XPos, mouseMotion.YPos
}
// GetMouseMotion returns how many pixels were moved last frame
func GetMouseMotion() (xDelta, yDelta int32) {
if isMouseCaptured {
return 0, 0
}
return GetMouseMotionCaptured()
}
func GetMouseMotionCaptured() (xDelta, yDelta int32) {
return mouseMotion.XDelta, mouseMotion.YDelta
}
func GetMouseMotionNorm() (xDelta, yDelta int32) {
if isMouseCaptured {
return 0, 0
}
return GetMouseMotionNormCaptured()
}
func GetMouseMotionNormCaptured() (xDelta, yDelta int32) {
x, y := mouseMotion.XDelta, mouseMotion.YDelta
if x > 0 {
x = 1
@ -152,12 +202,31 @@ func GetMouseMotionNorm() (xDelta, yDelta int32) {
}
func GetMouseWheelMotion() (xDelta, yDelta int32) {
if isMouseCaptured {
return 0, 0
}
return GetMouseWheelMotionCaptured()
}
func GetMouseWheelMotionCaptured() (xDelta, yDelta int32) {
return mouseWheel.XDelta, mouseWheel.YDelta
}
// GetMouseWheelXNorm returns 1 if mouse wheel xDelta > 0, -1 if xDelta < 0, and 0 otherwise
func GetMouseWheelXNorm() int32 {
if isMouseCaptured {
return 0
}
return GetMouseWheelXNormCaptured()
}
// GetMouseWheelXNormCaptured returns 1 if mouse wheel xDelta > 0, -1 if xDelta < 0, and 0 otherwise
func GetMouseWheelXNormCaptured() int32 {
if mouseWheel.XDelta > 0 {
return 1
} else if mouseWheel.XDelta < 0 {
@ -167,9 +236,19 @@ func GetMouseWheelXNorm() int32 {
return 0
}
// returns 1 if mouse wheel yDelta > 0, -1 if yDelta < 0, and 0 otherwise
// GetMouseWheelYNorm returns 1 if mouse wheel yDelta > 0, -1 if yDelta < 0, and 0 otherwise
func GetMouseWheelYNorm() int32 {
if isMouseCaptured {
return 0
}
return GetMouseWheelYNormCaptured()
}
// GetMouseWheelYNormCaptured returns 1 if mouse wheel yDelta > 0, -1 if yDelta < 0, and 0 otherwise
func GetMouseWheelYNormCaptured() int32 {
if mouseWheel.YDelta > 0 {
return 1
} else if mouseWheel.YDelta < 0 {
@ -181,6 +260,15 @@ func GetMouseWheelYNorm() int32 {
func KeyClicked(kc sdl.Keycode) bool {
if isKeyboardCaptured {
return false
}
return KeyClickedCaptured(kc)
}
func KeyClickedCaptured(kc sdl.Keycode) bool {
ks, ok := keyMap[kc]
if !ok {
return false
@ -191,6 +279,15 @@ func KeyClicked(kc sdl.Keycode) bool {
func KeyReleased(kc sdl.Keycode) bool {
if isKeyboardCaptured {
return false
}
return KeyReleasedCaptured(kc)
}
func KeyReleasedCaptured(kc sdl.Keycode) bool {
ks, ok := keyMap[kc]
if !ok {
return false
@ -201,6 +298,15 @@ func KeyReleased(kc sdl.Keycode) bool {
func KeyDown(kc sdl.Keycode) bool {
if isKeyboardCaptured {
return false
}
return KeyDownCaptured(kc)
}
func KeyDownCaptured(kc sdl.Keycode) bool {
ks, ok := keyMap[kc]
if !ok {
return false
@ -211,6 +317,15 @@ func KeyDown(kc sdl.Keycode) bool {
func KeyUp(kc sdl.Keycode) bool {
if isKeyboardCaptured {
return false
}
return KeyUpCaptured(kc)
}
func KeyUpCaptured(kc sdl.Keycode) bool {
ks, ok := keyMap[kc]
if !ok {
return true
@ -221,6 +336,15 @@ func KeyUp(kc sdl.Keycode) bool {
func MouseClicked(mb int) bool {
if isMouseCaptured {
return false
}
return MouseClickedCaptued(mb)
}
func MouseClickedCaptued(mb int) bool {
btn, ok := mouseBtnMap[mb]
if !ok {
return false
@ -231,6 +355,15 @@ func MouseClicked(mb int) bool {
func MouseDoubleClicked(mb int) bool {
if isMouseCaptured {
return false
}
return MouseDoubleClickedCaptured(mb)
}
func MouseDoubleClickedCaptured(mb int) bool {
btn, ok := mouseBtnMap[mb]
if !ok {
return false
@ -240,6 +373,16 @@ func MouseDoubleClicked(mb int) bool {
}
func MouseReleased(mb int) bool {
if isMouseCaptured {
return false
}
return MouseReleasedCaptured(mb)
}
func MouseReleasedCaptured(mb int) bool {
btn, ok := mouseBtnMap[mb]
if !ok {
return false
@ -250,6 +393,15 @@ func MouseReleased(mb int) bool {
func MouseDown(mb int) bool {
if isMouseCaptured {
return false
}
return MouseDownCaptued(mb)
}
func MouseDownCaptued(mb int) bool {
btn, ok := mouseBtnMap[mb]
if !ok {
return false
@ -260,6 +412,15 @@ func MouseDown(mb int) bool {
func MouseUp(mb int) bool {
if isMouseCaptured {
return false
}
return MouseUpCaptured(mb)
}
func MouseUpCaptured(mb int) bool {
btn, ok := mouseBtnMap[mb]
if !ok {
return true

493
main.go
View File

@ -30,9 +30,14 @@ import (
- Directional lights ✅
- Point lights ✅
- Spotlights ✅
- Directional light shadows ✅
- Point light shadows ✅
- Spotlight shadows ✅
- UBO support
- HDR
- Cascaded shadow mapping
- Skeletal animations
- In some cases we DO want input even when captured by UI. We need two systems within input package, one filtered and one not
- Proper model loading (i.e. load model by reading all its meshes, textures, and so on together)
- Create VAO struct independent from VBO to support multi-VBO use cases (e.g. instancing) ✅
- Renderer batching
@ -67,7 +72,7 @@ func (d *DirLight) GetProjViewMat() gglm.Mat4 {
farClip := dirLightFar
projMat := gglm.Ortho(-size, size, -size, size, nearClip, farClip).Mat4
viewMat := gglm.LookAtRH(pos, pos.Clone().Add(d.Dir.Clone().Scale(10)), gglm.NewVec3(0, 1, 0)).Mat4
viewMat := gglm.LookAtRH(pos, pos.Clone().Add(&d.Dir), gglm.NewVec3(0, 1, 0)).Mat4
return *projMat.Mul(&viewMat)
}
@ -78,32 +83,81 @@ type PointLight struct {
DiffuseColor gglm.Vec3
SpecularColor gglm.Vec3
// @TODO
Radius float32
Constant float32
Linear float32
Quadratic float32
FarPlane float32
}
const (
MaxPointLights = 8
// If this changes update the array depth map shader
MaxSpotLights = 4
)
var (
pointLightNear float32 = 1
)
func (p *PointLight) GetProjViewMats(shadowMapWidth, shadowMapHeight float32) [6]gglm.Mat4 {
aspect := float32(shadowMapWidth) / float32(shadowMapHeight)
projMat := gglm.Perspective(90*gglm.Deg2Rad, aspect, pointLightNear, p.FarPlane)
projViewMats := [6]gglm.Mat4{
*projMat.Clone().Mul(&gglm.LookAtRH(&p.Pos, gglm.NewVec3(1, 0, 0).Add(&p.Pos), gglm.NewVec3(0, -1, 0)).Mat4),
*projMat.Clone().Mul(&gglm.LookAtRH(&p.Pos, gglm.NewVec3(-1, 0, 0).Add(&p.Pos), gglm.NewVec3(0, -1, 0)).Mat4),
*projMat.Clone().Mul(&gglm.LookAtRH(&p.Pos, gglm.NewVec3(0, 1, 0).Add(&p.Pos), gglm.NewVec3(0, 0, 1)).Mat4),
*projMat.Clone().Mul(&gglm.LookAtRH(&p.Pos, gglm.NewVec3(0, -1, 0).Add(&p.Pos), gglm.NewVec3(0, 0, -1)).Mat4),
*projMat.Clone().Mul(&gglm.LookAtRH(&p.Pos, gglm.NewVec3(0, 0, 1).Add(&p.Pos), gglm.NewVec3(0, -1, 0)).Mat4),
*projMat.Clone().Mul(&gglm.LookAtRH(&p.Pos, gglm.NewVec3(0, 0, -1).Add(&p.Pos), gglm.NewVec3(0, -1, 0)).Mat4),
}
return projViewMats
}
type SpotLight struct {
Pos gglm.Vec3
Dir gglm.Vec3
DiffuseColor gglm.Vec3
SpecularColor gglm.Vec3
InnerCutoff float32
OuterCutoff float32
Pos gglm.Vec3
Dir gglm.Vec3
DiffuseColor gglm.Vec3
SpecularColor gglm.Vec3
InnerCutoffRad float32
OuterCutoffRad float32
// Near plane like 0.x (or anything too small) causes shadows to not work properly.
// Needs adjusting as the distance of light to object increases
NearPlane float32
FarPlane float32
}
// SetCutoffs properly sets the cosine values of the cutoffs using the passed
// degrees.
//
// The light has full intensity within the inner cutoff, falloff between
// inner-outer cutoff, and zero light beyond the outer cutoff.
//
// The inner cuttoff degree must be *smaller* than the outer cutoff
func (s *SpotLight) SetCutoffs(innerCutoffAngleDeg, outerCutoffAngleDeg float32) {
s.InnerCutoff = gglm.Cos32(innerCutoffAngleDeg * gglm.Deg2Rad)
s.OuterCutoff = gglm.Cos32(outerCutoffAngleDeg * gglm.Deg2Rad)
func (s *SpotLight) GetProjViewMat() gglm.Mat4 {
projMat := gglm.Perspective(s.OuterCutoffRad*2, 1, s.NearPlane, s.FarPlane)
// Adjust up vector if lightDir is parallel or nearly parallel to upVector
// as lookat view matrix breaks if up and look at are parallel
up := gglm.NewVec3(0, 1, 0)
if gglm.Abs32(gglm.DotVec3(&s.Dir, up)) > 0.99 {
up.SetXY(1, 0)
}
viewMat := gglm.LookAtRH(&s.Pos, s.Pos.Clone().Add(&s.Dir), up).Mat4
return *projMat.Mul(&viewMat)
}
func (s *SpotLight) InnerCutoffCos() float32 {
return gglm.Cos32(s.InnerCutoffRad)
}
func (s *SpotLight) OuterCutoffCos() float32 {
return gglm.Cos32(s.OuterCutoffRad)
}
const (
@ -121,27 +175,37 @@ var (
yaw float32 = -1.5
cam *camera.Camera
renderToDemoFbo = true
// Demo fbo
renderToDemoFbo = false
renderToBackBuffer = true
demoFboScale = gglm.NewVec2(0.25, 0.25)
demoFboOffset = gglm.NewVec2(0.75, -0.75)
demoFbo buffers.Framebuffer
renderToDepthMapFbo = true
depthMapFboScale = gglm.NewVec2(0.25, 0.25)
depthMapFboOffset = gglm.NewVec2(0.75, -0.2)
depthMapFbo buffers.Framebuffer
// Dir light fbo
showDirLightDepthMapFbo = false
dirLightDepthMapFboScale = gglm.NewVec2(0.25, 0.25)
dirLightDepthMapFboOffset = gglm.NewVec2(0.75, -0.2)
dirLightDepthMapFbo buffers.Framebuffer
// Point light fbo
pointLightDepthMapFbo buffers.Framebuffer
// Spot light fbo
spotLightDepthMapFbo buffers.Framebuffer
screenQuadVao buffers.VertexArray
screenQuadMat *materials.Material
unlitMat *materials.Material
whiteMat *materials.Material
containerMat *materials.Material
palleteMat *materials.Material
skyboxMat *materials.Material
depthMapMat *materials.Material
debugDepthMat *materials.Material
unlitMat *materials.Material
whiteMat *materials.Material
containerMat *materials.Material
palleteMat *materials.Material
skyboxMat *materials.Material
depthMapMat *materials.Material
arrayDepthMapMat *materials.Material
omnidirDepthMapMat *materials.Material
debugDepthMat *materials.Material
cubeMesh *meshes.Mesh
sphereMesh *meshes.Mesh
@ -168,13 +232,15 @@ var (
}
pointLights = [...]PointLight{
{
Pos: *gglm.NewVec3(0, 5, 0),
Pos: *gglm.NewVec3(0, 2, -2),
DiffuseColor: *gglm.NewVec3(1, 0, 0),
SpecularColor: *gglm.NewVec3(1, 1, 1),
// These values are for 50m range
Constant: 1.0,
Linear: 0.09,
Quadratic: 0.032,
FarPlane: 25,
},
{
Pos: *gglm.NewVec3(0, -5, 0),
@ -183,6 +249,7 @@ var (
Constant: 1.0,
Linear: 0.09,
Quadratic: 0.032,
FarPlane: 25,
},
{
Pos: *gglm.NewVec3(5, 0, 0),
@ -191,25 +258,30 @@ var (
Constant: 1.0,
Linear: 0.09,
Quadratic: 0.032,
FarPlane: 25,
},
{
Pos: *gglm.NewVec3(-4, 0, 0),
DiffuseColor: *gglm.NewVec3(0, 0, 1),
Pos: *gglm.NewVec3(-3, 4, 3),
DiffuseColor: *gglm.NewVec3(1, 1, 1),
SpecularColor: *gglm.NewVec3(1, 1, 1),
Constant: 1.0,
Linear: 0.09,
Quadratic: 0.032,
FarPlane: 25,
},
}
spotLights = [...]SpotLight{
{
Pos: *gglm.NewVec3(0, 5, 0),
Dir: *gglm.NewVec3(0, -1, 0),
DiffuseColor: *gglm.NewVec3(0, 1, 1),
Pos: *gglm.NewVec3(-4, 7, 5),
Dir: *gglm.NewVec3(1.5, -0.9, 0).Normalize(),
DiffuseColor: *gglm.NewVec3(1, 0, 1),
SpecularColor: *gglm.NewVec3(1, 1, 1),
// These must be cosine values
InnerCutoff: gglm.Cos32(15 * gglm.Deg2Rad),
OuterCutoff: gglm.Cos32(20 * gglm.Deg2Rad),
InnerCutoffRad: 15 * gglm.Deg2Rad,
OuterCutoffRad: 20 * gglm.Deg2Rad,
NearPlane: 1,
FarPlane: 30,
},
}
)
@ -400,7 +472,9 @@ func (g *Game) Init() {
whiteMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
whiteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
whiteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
whiteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
whiteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
whiteMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
whiteMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
containerMat = materials.NewMaterial("Container mat", "./res/shaders/simple.glsl")
containerMat.Shininess = 64
@ -417,7 +491,9 @@ func (g *Game) Init() {
containerMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
containerMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
containerMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
containerMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
containerMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
containerMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
containerMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
palleteMat = materials.NewMaterial("Pallete mat", "./res/shaders/simple.glsl")
palleteMat.Shininess = 64
@ -433,12 +509,18 @@ func (g *Game) Init() {
palleteMat.SetUnifFloat32("material.shininess", palleteMat.Shininess)
palleteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
palleteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
palleteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
palleteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
palleteMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
palleteMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
debugDepthMat = materials.NewMaterial("Debug depth mat", "./res/shaders/debug-depth.glsl")
depthMapMat = materials.NewMaterial("Depth Map mat", "./res/shaders/depth-map.glsl")
arrayDepthMapMat = materials.NewMaterial("Array Depth Map mat", "./res/shaders/array-depth-map.glsl")
omnidirDepthMapMat = materials.NewMaterial("Omnidirectional Depth Map mat", "./res/shaders/omnidirectional-depth-map.glsl")
skyboxMat = materials.NewMaterial("Skybox mat", "./res/shaders/skybox.glsl")
skyboxMat.CubemapTex = skyboxCmap.TexID
skyboxMat.SetUnifInt32("skybox", int32(materials.TextureSlot_Cubemap))
@ -484,58 +566,89 @@ func (g *Game) initFbos() {
assert.T(demoFbo.IsComplete(), "Demo fbo is not complete after init")
// Depth map fbo
depthMapFbo = buffers.NewFramebuffer(1024, 1024)
depthMapFbo.SetNoColorBuffer()
depthMapFbo.NewDepthAttachment(
dirLightDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
dirLightDepthMapFbo.SetNoColorBuffer()
dirLightDepthMapFbo.NewDepthAttachment(
buffers.FramebufferAttachmentType_Texture,
buffers.FramebufferAttachmentDataFormat_DepthF32,
)
assert.T(depthMapFbo.IsComplete(), "Depth map fbo is not complete after init")
assert.T(dirLightDepthMapFbo.IsComplete(), "Depth map fbo is not complete after init")
// Point light depth map fbo
pointLightDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
pointLightDepthMapFbo.SetNoColorBuffer()
pointLightDepthMapFbo.NewDepthCubemapArrayAttachment(
buffers.FramebufferAttachmentDataFormat_DepthF32,
MaxPointLights,
)
assert.T(pointLightDepthMapFbo.IsComplete(), "Point light depth map fbo is not complete after init")
// Spot light depth map fbo
spotLightDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
spotLightDepthMapFbo.SetNoColorBuffer()
spotLightDepthMapFbo.NewDepthTextureArrayAttachment(
buffers.FramebufferAttachmentDataFormat_DepthF32,
MaxSpotLights,
)
assert.T(spotLightDepthMapFbo.IsComplete(), "Spot light depth map fbo is not complete after init")
}
func (g *Game) updateLights() {
// Directional light
whiteMat.ShadowMap = depthMapFbo.Attachments[0].Id
containerMat.ShadowMap = depthMapFbo.Attachments[0].Id
palleteMat.ShadowMap = depthMapFbo.Attachments[0].Id
whiteMat.ShadowMapTex1 = dirLightDepthMapFbo.Attachments[0].Id
containerMat.ShadowMapTex1 = dirLightDepthMapFbo.Attachments[0].Id
palleteMat.ShadowMapTex1 = dirLightDepthMapFbo.Attachments[0].Id
// Point lights
for i := 0; i < len(pointLights); i++ {
pl := &pointLights[i]
p := &pointLights[i]
indexString := "pointLights[" + strconv.Itoa(i) + "]"
whiteMat.SetUnifVec3(indexString+".pos", &pl.Pos)
containerMat.SetUnifVec3(indexString+".pos", &pl.Pos)
palleteMat.SetUnifVec3(indexString+".pos", &pl.Pos)
whiteMat.SetUnifVec3(indexString+".pos", &p.Pos)
containerMat.SetUnifVec3(indexString+".pos", &p.Pos)
palleteMat.SetUnifVec3(indexString+".pos", &p.Pos)
whiteMat.SetUnifVec3(indexString+".diffuseColor", &pl.DiffuseColor)
containerMat.SetUnifVec3(indexString+".diffuseColor", &pl.DiffuseColor)
palleteMat.SetUnifVec3(indexString+".diffuseColor", &pl.DiffuseColor)
whiteMat.SetUnifVec3(indexString+".diffuseColor", &p.DiffuseColor)
containerMat.SetUnifVec3(indexString+".diffuseColor", &p.DiffuseColor)
palleteMat.SetUnifVec3(indexString+".diffuseColor", &p.DiffuseColor)
whiteMat.SetUnifVec3(indexString+".specularColor", &pl.SpecularColor)
containerMat.SetUnifVec3(indexString+".specularColor", &pl.SpecularColor)
palleteMat.SetUnifVec3(indexString+".specularColor", &pl.SpecularColor)
whiteMat.SetUnifVec3(indexString+".specularColor", &p.SpecularColor)
containerMat.SetUnifVec3(indexString+".specularColor", &p.SpecularColor)
palleteMat.SetUnifVec3(indexString+".specularColor", &p.SpecularColor)
whiteMat.SetUnifFloat32(indexString+".constant", pl.Constant)
containerMat.SetUnifFloat32(indexString+".constant", pl.Constant)
palleteMat.SetUnifFloat32(indexString+".constant", pl.Constant)
whiteMat.SetUnifFloat32(indexString+".constant", p.Constant)
containerMat.SetUnifFloat32(indexString+".constant", p.Constant)
palleteMat.SetUnifFloat32(indexString+".constant", p.Constant)
whiteMat.SetUnifFloat32(indexString+".linear", pl.Linear)
containerMat.SetUnifFloat32(indexString+".linear", pl.Linear)
palleteMat.SetUnifFloat32(indexString+".linear", pl.Linear)
whiteMat.SetUnifFloat32(indexString+".linear", p.Linear)
containerMat.SetUnifFloat32(indexString+".linear", p.Linear)
palleteMat.SetUnifFloat32(indexString+".linear", p.Linear)
whiteMat.SetUnifFloat32(indexString+".quadratic", pl.Quadratic)
containerMat.SetUnifFloat32(indexString+".quadratic", pl.Quadratic)
palleteMat.SetUnifFloat32(indexString+".quadratic", pl.Quadratic)
whiteMat.SetUnifFloat32(indexString+".quadratic", p.Quadratic)
containerMat.SetUnifFloat32(indexString+".quadratic", p.Quadratic)
palleteMat.SetUnifFloat32(indexString+".quadratic", p.Quadratic)
whiteMat.SetUnifFloat32(indexString+".farPlane", p.FarPlane)
containerMat.SetUnifFloat32(indexString+".farPlane", p.FarPlane)
palleteMat.SetUnifFloat32(indexString+".farPlane", p.FarPlane)
}
whiteMat.CubemapArrayTex = pointLightDepthMapFbo.Attachments[0].Id
containerMat.CubemapArrayTex = pointLightDepthMapFbo.Attachments[0].Id
palleteMat.CubemapArrayTex = pointLightDepthMapFbo.Attachments[0].Id
// Spotlights
for i := 0; i < len(spotLights); i++ {
l := &spotLights[i]
innerCutoffCos := l.InnerCutoffCos()
outerCutoffCos := l.OuterCutoffCos()
indexString := "spotLights[" + strconv.Itoa(i) + "]"
whiteMat.SetUnifVec3(indexString+".pos", &l.Pos)
@ -554,14 +667,18 @@ func (g *Game) updateLights() {
containerMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
palleteMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
whiteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
containerMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
palleteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
whiteMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
containerMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
palleteMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
whiteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
containerMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
palleteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
whiteMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
containerMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
palleteMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
}
whiteMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
containerMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
palleteMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
}
func (g *Game) Update() {
@ -573,11 +690,6 @@ func (g *Game) Update() {
g.updateCameraLookAround()
g.updateCameraPos()
//Rotating cubes
if input.KeyDown(sdl.K_SPACE) {
cubeModelMat.Rotate(10*timing.DT()*gglm.Deg2Rad, gglm.NewVec3(1, 1, 1).Normalize())
}
g.showDebugWindow()
if input.KeyClicked(sdl.K_F4) {
@ -620,6 +732,8 @@ func (g *Game) showDebugWindow() {
// Directional light
imgui.Text("Directional Light")
imgui.Checkbox("Render Directional Light Shadows", &renderDirLightShadows)
if imgui.DragFloat3("Direction", &dirLight.Dir.Data) {
whiteMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
containerMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
@ -657,6 +771,7 @@ func (g *Game) showDebugWindow() {
imgui.Spacing()
// Point lights
imgui.Checkbox("Render Point Light Shadows", &renderPointLightShadows)
if imgui.BeginListBoxV("Point Lights", imgui.Vec2{Y: 200}) {
for i := 0; i < len(pointLights); i++ {
@ -695,6 +810,8 @@ func (g *Game) showDebugWindow() {
}
// Spot lights
imgui.Checkbox("Render Spot Light Shadows", &renderSpotLightShadows)
if imgui.BeginListBoxV("Spot Lights", imgui.Vec2{Y: 200}) {
for i := 0; i < len(spotLights); i++ {
@ -732,18 +849,27 @@ func (g *Game) showDebugWindow() {
palleteMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
}
if imgui.DragFloat("Inner Cutoff", &l.InnerCutoff) {
whiteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
containerMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
palleteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
if imgui.DragFloat("Inner Cutoff Radians", &l.InnerCutoffRad) {
cos := l.InnerCutoffCos()
whiteMat.SetUnifFloat32(indexString+".innerCutoff", cos)
containerMat.SetUnifFloat32(indexString+".innerCutoff", cos)
palleteMat.SetUnifFloat32(indexString+".innerCutoff", cos)
}
if imgui.DragFloat("Outer Cutoff", &l.OuterCutoff) {
whiteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
containerMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
palleteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
if imgui.DragFloat("Outer Cutoff Radians", &l.OuterCutoffRad) {
cos := l.OuterCutoffCos()
whiteMat.SetUnifFloat32(indexString+".outerCutoff", cos)
containerMat.SetUnifFloat32(indexString+".outerCutoff", cos)
palleteMat.SetUnifFloat32(indexString+".outerCutoff", cos)
}
imgui.DragFloat("Spot Near Plane", &l.NearPlane)
imgui.DragFloat("Spot Far Plane", &l.FarPlane)
imgui.TreePop()
}
@ -752,15 +878,15 @@ func (g *Game) showDebugWindow() {
// Demo fbo
imgui.Text("Demo Framebuffer")
imgui.Checkbox("Render to demo FBO", &renderToDemoFbo)
imgui.Checkbox("Show FBO##0", &renderToDemoFbo)
imgui.DragFloat2("Scale##0", &demoFboScale.Data)
imgui.DragFloat2("Offset##0", &demoFboOffset.Data)
// Depth map fbo
imgui.Text("Depth Map Framebuffer")
imgui.Checkbox("Render to depth map FBO", &renderToDepthMapFbo)
imgui.DragFloat2("Scale##1", &depthMapFboScale.Data)
imgui.DragFloat2("Offset##1", &depthMapFboOffset.Data)
imgui.Text("Directional Light Depth Map Framebuffer")
imgui.Checkbox("Show FBO##1", &showDirLightDepthMapFbo)
imgui.DragFloat2("Scale##1", &dirLightDepthMapFboScale.Data)
imgui.DragFloat2("Offset##1", &dirLightDepthMapFboOffset.Data)
// Other
imgui.Text("Other Settings")
@ -831,45 +957,39 @@ func (g *Game) updateCameraPos() {
}
}
var (
renderDirLightShadows = true
renderPointLightShadows = true
renderSpotLightShadows = true
rotatingCubeSpeedDeg1 float32 = 45
rotatingCubeSpeedDeg2 float32 = 120
rotatingCubeSpeedDeg3 float32 = 120
rotatingCubeTrMat1 = *gglm.NewTrMatId().Translate(gglm.NewVec3(-4, -1, 4))
rotatingCubeTrMat2 = *gglm.NewTrMatId().Translate(gglm.NewVec3(-1, 0.5, 4))
rotatingCubeTrMat3 = *gglm.NewTrMatId().Translate(gglm.NewVec3(5, 0.5, 4))
)
func (g *Game) Render() {
dirLightProjViewMat := dirLight.GetProjViewMat()
// Set some uniforms
whiteMat.SetUnifVec3("camPos", &cam.Pos)
whiteMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
containerMat.SetUnifVec3("camPos", &cam.Pos)
containerMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
palleteMat.SetUnifVec3("camPos", &cam.Pos)
palleteMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
depthMapMat.SetUnifMat4("projViewMat", &dirLightProjViewMat)
rotatingCubeTrMat1.Rotate(rotatingCubeSpeedDeg1*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(0, 1, 0))
rotatingCubeTrMat2.Rotate(rotatingCubeSpeedDeg2*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(1, 1, 0))
rotatingCubeTrMat3.Rotate(rotatingCubeSpeedDeg3*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(1, 1, 1))
//
// Render depth map for shadows
//
depthMapFbo.BindWithViewport()
depthMapFbo.Clear()
if renderDirLightShadows {
g.renderDirectionalLightShadowmap()
}
// Culling front faces helps 'peter panning' when
// drawing shadow maps, but works only for solids with a back face (i.e. quads won't cast shadows).
// Check more here: https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
//
// Some note that this is too troublesome and fails in many cases. Might be better to remove.
gl.CullFace(gl.FRONT)
g.RenderScene(depthMapMat)
gl.CullFace(gl.BACK)
if renderSpotLightShadows {
g.renderSpotLightShadowmaps()
}
depthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
if renderToDepthMapFbo {
screenQuadMat.DiffuseTex = depthMapFbo.Attachments[0].Id
screenQuadMat.SetUnifVec2("offset", depthMapFboOffset)
screenQuadMat.SetUnifVec2("scale", depthMapFboScale)
screenQuadMat.Bind()
window.Rend.DrawVertexArray(screenQuadMat, &screenQuadVao, 0, 6)
if renderPointLightShadows {
g.renderPointLightShadowmaps()
}
if renderToBackBuffer {
@ -886,36 +1006,125 @@ func (g *Game) Render() {
}
if renderToDemoFbo {
g.renderDemoFob()
}
}
demoFbo.Bind()
demoFbo.Clear()
func (g *Game) renderDirectionalLightShadowmap() {
if renderDepthBuffer {
g.RenderScene(debugDepthMat)
} else {
g.RenderScene(nil)
}
// Set some uniforms
dirLightProjViewMat := dirLight.GetProjViewMat()
if renderSkybox {
g.DrawSkybox()
}
whiteMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
containerMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
palleteMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
demoFbo.UnBind()
depthMapMat.SetUnifMat4("projViewMat", &dirLightProjViewMat)
screenQuadMat.DiffuseTex = demoFbo.Attachments[0].Id
screenQuadMat.SetUnifVec2("offset", demoFboOffset)
screenQuadMat.SetUnifVec2("scale", demoFboScale)
// Start rendering
dirLightDepthMapFbo.BindWithViewport()
dirLightDepthMapFbo.Clear()
// Culling front faces helps 'peter panning' when
// drawing shadow maps, but works only for solids with a back face (i.e. quads won't cast shadows).
// Check more here: https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
//
// Some note that this is too troublesome and fails in many cases. Might be better to remove.
gl.CullFace(gl.FRONT)
g.RenderScene(depthMapMat)
gl.CullFace(gl.BACK)
dirLightDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
if showDirLightDepthMapFbo {
screenQuadMat.DiffuseTex = dirLightDepthMapFbo.Attachments[0].Id
screenQuadMat.SetUnifVec2("offset", dirLightDepthMapFboOffset)
screenQuadMat.SetUnifVec2("scale", dirLightDepthMapFboScale)
screenQuadMat.Bind()
window.Rend.DrawVertexArray(screenQuadMat, &screenQuadVao, 0, 6)
}
}
var (
rotatingCubeSpeedDeg1 float32 = 45
rotatingCubeSpeedDeg2 float32 = 90
rotatingCubeTrMat1 = *gglm.NewTrMatId().Translate(gglm.NewVec3(-4, -1, 4))
rotatingCubeTrMat2 = *gglm.NewTrMatId().Translate(gglm.NewVec3(-1, 0.5, 4))
)
func (g *Game) renderSpotLightShadowmaps() {
for i := 0; i < len(spotLights); i++ {
l := &spotLights[i]
indexStr := strconv.Itoa(i)
projViewMatIndexStr := "spotLightProjViewMats[" + indexStr + "]"
// Set render uniforms
projViewMat := l.GetProjViewMat()
whiteMat.SetUnifMat4(projViewMatIndexStr, &projViewMat)
containerMat.SetUnifMat4(projViewMatIndexStr, &projViewMat)
palleteMat.SetUnifMat4(projViewMatIndexStr, &projViewMat)
// Set depth uniforms
arrayDepthMapMat.SetUnifMat4("projViewMats["+indexStr+"]", &projViewMat)
}
// Render
spotLightDepthMapFbo.BindWithViewport()
spotLightDepthMapFbo.Clear()
// Front culling created issues
// gl.CullFace(gl.FRONT)
g.RenderScene(arrayDepthMapMat)
// gl.CullFace(gl.BACK)
spotLightDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
}
func (g *Game) renderPointLightShadowmaps() {
pointLightDepthMapFbo.BindWithViewport()
pointLightDepthMapFbo.Clear()
for i := 0; i < len(pointLights); i++ {
p := &pointLights[i]
// Generic uniforms
omnidirDepthMapMat.SetUnifVec3("lightPos", &p.Pos)
omnidirDepthMapMat.SetUnifInt32("cubemapIndex", int32(i))
omnidirDepthMapMat.SetUnifFloat32("farPlane", p.FarPlane)
// Set projView matrices
projViewMats := p.GetProjViewMats(float32(pointLightDepthMapFbo.Width), float32(pointLightDepthMapFbo.Height))
for j := 0; j < len(projViewMats); j++ {
omnidirDepthMapMat.SetUnifMat4("cubemapProjViewMats["+strconv.Itoa(j)+"]", &projViewMats[j])
}
g.RenderScene(omnidirDepthMapMat)
}
pointLightDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
}
func (g *Game) renderDemoFob() {
demoFbo.Bind()
demoFbo.Clear()
if renderDepthBuffer {
g.RenderScene(debugDepthMat)
} else {
g.RenderScene(nil)
}
if renderSkybox {
g.DrawSkybox()
}
demoFbo.UnBind()
screenQuadMat.DiffuseTex = demoFbo.Attachments[0].Id
screenQuadMat.SetUnifVec2("offset", demoFboOffset)
screenQuadMat.SetUnifVec2("scale", demoFboScale)
window.Rend.DrawVertexArray(screenQuadMat, &screenQuadVao, 0, 6)
}
func (g *Game) RenderScene(overrideMat *materials.Material) {
@ -956,11 +1165,9 @@ func (g *Game) RenderScene(overrideMat *materials.Material) {
window.Rend.DrawMesh(cubeMesh, tempModelMatrix, cubeMat)
// Rotating cubes
rotatingCubeTrMat1.Rotate(rotatingCubeSpeedDeg1*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(0, 1, 0))
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat1, cubeMat)
rotatingCubeTrMat2.Rotate(rotatingCubeSpeedDeg2*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(1, 1, 0))
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat2, cubeMat)
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat3, cubeMat)
// Cubes generator
// rowSize := 1

View File

@ -11,12 +11,14 @@ import (
type TextureSlot uint32
const (
TextureSlot_Diffuse TextureSlot = 0
TextureSlot_Specular TextureSlot = 1
TextureSlot_Normal TextureSlot = 2
TextureSlot_Emission TextureSlot = 3
TextureSlot_Cubemap TextureSlot = 10
TextureSlot_ShadowMap TextureSlot = 11
TextureSlot_Diffuse TextureSlot = 0
TextureSlot_Specular TextureSlot = 1
TextureSlot_Normal TextureSlot = 2
TextureSlot_Emission TextureSlot = 3
TextureSlot_Cubemap TextureSlot = 10
TextureSlot_Cubemap_Array TextureSlot = 11
TextureSlot_ShadowMap1 TextureSlot = 12
TextureSlot_ShadowMap_Array1 TextureSlot = 13
)
type Material struct {
@ -26,6 +28,7 @@ type Material struct {
UnifLocs map[string]int32
AttribLocs map[string]int32
// @TODO do this in a better way. Perhaps something like how we do fbo attachments
// Phong shading
DiffuseTex uint32
SpecularTex uint32
@ -35,16 +38,18 @@ type Material struct {
// Shininess of specular highlights
Shininess float32
// Cubemap
CubemapTex uint32
// Cubemaps
CubemapTex uint32
CubemapArrayTex uint32
// Shadowmaps
ShadowMap uint32
ShadowMapTex1 uint32
ShadowMapTexArray1 uint32
}
func (m *Material) Bind() {
gl.UseProgram(m.ShaderProg.ID)
m.ShaderProg.Bind()
if m.DiffuseTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Diffuse))
@ -71,9 +76,19 @@ func (m *Material) Bind() {
gl.BindTexture(gl.TEXTURE_CUBE_MAP, m.CubemapTex)
}
if m.ShadowMap != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap))
gl.BindTexture(gl.TEXTURE_2D, m.ShadowMap)
if m.CubemapArrayTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Cubemap_Array))
gl.BindTexture(gl.TEXTURE_CUBE_MAP_ARRAY, m.CubemapArrayTex)
}
if m.ShadowMapTex1 != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap1))
gl.BindTexture(gl.TEXTURE_2D, m.ShadowMapTex1)
}
if m.ShadowMapTexArray1 != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap_Array1))
gl.BindTexture(gl.TEXTURE_2D_ARRAY, m.ShadowMapTexArray1)
}
}
@ -88,7 +103,7 @@ func (m *Material) GetAttribLoc(attribName string) int32 {
return loc
}
loc = gl.GetAttribLocation(m.ShaderProg.ID, gl.Str(attribName+"\x00"))
loc = gl.GetAttribLocation(m.ShaderProg.Id, gl.Str(attribName+"\x00"))
assert.T(loc != -1, "Attribute '"+attribName+"' doesn't exist on material "+m.Name)
m.AttribLocs[attribName] = loc
return loc
@ -101,7 +116,7 @@ func (m *Material) GetUnifLoc(uniformName string) int32 {
return loc
}
loc = gl.GetUniformLocation(m.ShaderProg.ID, gl.Str(uniformName+"\x00"))
loc = gl.GetUniformLocation(m.ShaderProg.Id, gl.Str(uniformName+"\x00"))
assert.T(loc != -1, "Uniform '"+uniformName+"' doesn't exist on material "+m.Name)
m.UnifLocs[uniformName] = loc
return loc
@ -116,39 +131,39 @@ func (m *Material) DisableAttribute(attribName string) {
}
func (m *Material) SetUnifInt32(uniformName string, val int32) {
gl.ProgramUniform1i(m.ShaderProg.ID, m.GetUnifLoc(uniformName), val)
gl.ProgramUniform1i(m.ShaderProg.Id, m.GetUnifLoc(uniformName), val)
}
func (m *Material) SetUnifFloat32(uniformName string, val float32) {
gl.ProgramUniform1f(m.ShaderProg.ID, m.GetUnifLoc(uniformName), val)
gl.ProgramUniform1f(m.ShaderProg.Id, m.GetUnifLoc(uniformName), val)
}
func (m *Material) SetUnifVec2(uniformName string, vec2 *gglm.Vec2) {
gl.ProgramUniform2fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, &vec2.Data[0])
gl.ProgramUniform2fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, &vec2.Data[0])
}
func (m *Material) SetUnifVec3(uniformName string, vec3 *gglm.Vec3) {
gl.ProgramUniform3fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, &vec3.Data[0])
gl.ProgramUniform3fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, &vec3.Data[0])
}
func (m *Material) SetUnifVec4(uniformName string, vec4 *gglm.Vec4) {
gl.ProgramUniform4fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, &vec4.Data[0])
gl.ProgramUniform4fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, &vec4.Data[0])
}
func (m *Material) SetUnifMat2(uniformName string, mat2 *gglm.Mat2) {
gl.ProgramUniformMatrix2fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, false, &mat2.Data[0][0])
gl.ProgramUniformMatrix2fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, false, &mat2.Data[0][0])
}
func (m *Material) SetUnifMat3(uniformName string, mat3 *gglm.Mat3) {
gl.ProgramUniformMatrix3fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, false, &mat3.Data[0][0])
gl.ProgramUniformMatrix3fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, false, &mat3.Data[0][0])
}
func (m *Material) SetUnifMat4(uniformName string, mat4 *gglm.Mat4) {
gl.ProgramUniformMatrix4fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, false, &mat4.Data[0][0])
gl.ProgramUniformMatrix4fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, false, &mat4.Data[0][0])
}
func (m *Material) Delete() {
gl.DeleteProgram(m.ShaderProg.ID)
gl.DeleteProgram(m.ShaderProg.Id)
}
func NewMaterial(matName, shaderPath string) *Material {

View File

@ -0,0 +1,54 @@
//shader:vertex
#version 410
layout(location=0) in vec3 vertPosIn;
uniform mat4 modelMat;
void main()
{
gl_Position = modelMat * vec4(vertPosIn, 1);
}
//shader:geometry
#version 410
layout (triangles) in;
#define NUM_PROJ_VIEW_MATS 4
// 3 * NUM_PROJ_VIEW_MATS
layout (triangle_strip, max_vertices=12) out;
// This is the same number as max spot lights or whatever else is being rendered
uniform mat4 projViewMats[NUM_PROJ_VIEW_MATS];
out vec4 FragPos;
void main()
{
for(int projViewMatIndex = 0; projViewMatIndex < NUM_PROJ_VIEW_MATS; projViewMatIndex++){
gl_Layer = projViewMatIndex;
mat4 projViewMat = projViewMats[projViewMatIndex];
for(int i = 0; i < 3; i++)
{
FragPos = gl_in[i].gl_Position;
gl_Position = projViewMat * FragPos;
EmitVertex();
}
EndPrimitive();
}
}
//shader:fragment
#version 410
in vec4 FragPos;
void main()
{
// This implicitly writes to the depth buffer with no color operations
// Equivalent: gl_FragDepth = gl_FragCoord.z;
}

View File

@ -0,0 +1,65 @@
//shader:vertex
#version 410
layout(location=0) in vec3 vertPosIn;
uniform mat4 modelMat;
void main()
{
gl_Position = modelMat * vec4(vertPosIn, 1);
}
//shader:geometry
#version 410
layout (triangles) in;
// Cubemap means 6 faces, and the
// input 3 triangle vertices are drawn once per face, so 6*3=18
layout (triangle_strip, max_vertices=18) out;
uniform int cubemapIndex;
uniform mat4 cubemapProjViewMats[6];
out vec4 FragPos;
void main()
{
for(int face = 0; face < 6; ++face)
{
// Built in variable that specifies which cubemap face we are rendering to
// and only works when a cubemap is attached to the active fbo.
//
// We use an additional index here because our fbo has a cubemap array
gl_Layer = (cubemapIndex * 6) + face;
// Transform each triangle vertex
for(int i = 0; i < 3; ++i)
{
FragPos = gl_in[i].gl_Position;
gl_Position = cubemapProjViewMats[face] * FragPos;
EmitVertex();
}
EndPrimitive();
}
}
//shader:fragment
#version 410
in vec4 FragPos;
uniform vec3 lightPos;
uniform float farPlane;
void main()
{
// Get distance between fragment and light source
float lightDistance = length(FragPos.xyz - lightPos);
// Map to [0, 1] by dividing by far plane and use it as our depth
lightDistance = lightDistance / farPlane;
gl_FragDepth = lightDistance;
}

View File

@ -6,15 +6,19 @@ layout(location=1) in vec3 vertNormalIn;
layout(location=2) in vec2 vertUV0In;
layout(location=3) in vec3 vertColorIn;
uniform mat4 modelMat;
uniform mat4 projViewMat;
uniform mat4 dirLightProjViewMat;
#define NUM_SPOT_LIGHTS 4
uniform mat4 spotLightProjViewMats[NUM_SPOT_LIGHTS];
out vec3 vertNormal;
out vec2 vertUV0;
out vec3 vertColor;
out vec3 fragPos;
out vec4 fragPosDirLight;
uniform mat4 modelMat;
uniform mat4 projViewMat;
uniform mat4 dirLightProjViewMat;
out vec4 fragPosSpotLight[NUM_SPOT_LIGHTS];
void main()
{
@ -23,7 +27,6 @@ void main()
// This produces the normal matrix that multiplies with the model normal to produce the
// world space normal. Based on 'One last thing' section from: https://learnopengl.com/Lighting/Basic-Lighting
vertNormal = mat3(transpose(inverse(modelMat))) * vertNormalIn;
vertNormal = mat3(transpose(inverse(modelMat))) * vertNormalIn;
vertUV0 = vertUV0In;
vertColor = vertColorIn;
@ -32,6 +35,9 @@ void main()
fragPos = modelVert.xyz;
fragPosDirLight = dirLightProjViewMat * vec4(fragPos, 1);
for (int i = 0; i < NUM_SPOT_LIGHTS; i++)
fragPosSpotLight[i] = spotLightProjViewMats[i] * vec4(fragPos, 1);
gl_Position = projViewMat * modelVert;
}
@ -64,10 +70,12 @@ struct PointLight {
float constant;
float linear;
float quadratic;
float farPlane;
};
#define NUM_POINT_LIGHTS 16
#define NUM_POINT_LIGHTS 8
uniform PointLight pointLights[NUM_POINT_LIGHTS];
uniform samplerCubeArray pointLightCubeShadowMaps;
struct SpotLight {
vec3 pos;
@ -80,6 +88,7 @@ struct SpotLight {
#define NUM_SPOT_LIGHTS 4
uniform SpotLight spotLights[NUM_SPOT_LIGHTS];
uniform sampler2DArray spotLightShadowMaps;
uniform vec3 camPos;
uniform vec3 ambientColor = vec3(0.2, 0.2, 0.2);
@ -89,6 +98,7 @@ in vec3 vertNormal;
in vec2 vertUV0;
in vec3 fragPos;
in vec4 fragPosDirLight;
in vec4 fragPosSpotLight[NUM_SPOT_LIGHTS];
out vec4 fragColor;
@ -99,7 +109,7 @@ vec4 emissionTexColor;
vec3 normalizedVertNorm;
vec3 viewDir;
float CalcShadow(sampler2D shadowMap, vec3 lightDir)
float CalcDirShadow(sampler2D shadowMap, vec3 lightDir)
{
// Move from clip space to NDC
vec3 projCoords = fragPosDirLight.xyz / fragPosDirLight.w;
@ -118,13 +128,13 @@ float CalcShadow(sampler2D shadowMap, vec3 lightDir)
// angle gives a higher bias, as shadow acne gets worse with angle
float bias = max(0.05 * (1 - dot(normalizedVertNorm, lightDir)), 0.005);
// 'Percentage Close Filtering'. B
// 'Percentage Close Filtering'.
// Basically get soft shadows by averaging this texel and surrounding ones
float shadow = 0;
vec2 texelSize = 1 / textureSize(shadowMap, 0);
for(int x = -1; x <= 1; ++x)
for(int x = -1; x <= 1; x++)
{
for(int y = -1; y <= 1; ++y)
for(int y = -1; y <= 1; y++)
{
float pcfDepth = texture(shadowMap, projCoords.xy + vec2(x, y) * texelSize).r;
@ -153,12 +163,30 @@ vec3 CalcDirLight()
vec3 finalSpecular = specularAmount * dirLight.specularColor * specularTexColor.rgb;
// Shadow
float shadow = CalcShadow(dirLight.shadowMap, lightDir);
float shadow = CalcDirShadow(dirLight.shadowMap, lightDir);
return (finalDiffuse + finalSpecular) * (1 - shadow);
}
vec3 CalcPointLight(PointLight pointLight)
float CalcPointShadow(int lightIndex, vec3 lightPos, vec3 lightDir, float farPlane) {
vec3 lightToFrag = fragPos - lightPos;
float closestDepth = texture(pointLightCubeShadowMaps, vec4(lightToFrag, lightIndex)).r;
// We stored depth in the cubemap in the range [0, 1], so now we move back to [0, farPlane]
closestDepth *= farPlane;
// Get depth of current fragment
float currentDepth = length(lightToFrag);
float bias = max(0.05 * (1 - dot(normalizedVertNorm, lightDir)), 0.005);
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
return shadow;
}
vec3 CalcPointLight(PointLight pointLight, int lightIndex)
{
// Ignore unset lights
if (pointLight.constant == 0){
@ -176,14 +204,57 @@ vec3 CalcPointLight(PointLight pointLight)
float specularAmount = pow(max(dot(normalizedVertNorm, halfwayDir), 0.0), material.shininess);
vec3 finalSpecular = specularAmount * pointLight.specularColor * specularTexColor.rgb;
// attenuation
// Attenuation
float distToLight = length(pointLight.pos - fragPos);
float attenuation = 1 / (pointLight.constant + pointLight.linear * distToLight + pointLight.quadratic * (distToLight * distToLight));
return (finalDiffuse + finalSpecular) * attenuation;
// Shadow
float shadow = CalcPointShadow(lightIndex, pointLight.pos, lightDir, pointLight.farPlane);
return (finalDiffuse + finalSpecular) * attenuation * (1 - shadow);
}
vec3 CalcSpotLight(SpotLight light)
float CalcSpotShadow(vec3 lightDir, int lightIndex)
{
// Move from clip space to NDC
vec3 projCoords = fragPosSpotLight[lightIndex].xyz / fragPosSpotLight[lightIndex].w;
// Move from [-1,1] to [0, 1]
projCoords = projCoords * 0.5 + 0.5;
// If sampling outside the depth texture then force 'no shadow'
if(projCoords.z > 1)
return 0;
// currentDepth is the fragment depth from the light's perspective
float currentDepth = projCoords.z;
// Bias in the range [0.005, 0.05] depending on the angle, where a higher
// angle gives a higher bias, as shadow acne gets worse with angle
float bias = max(0.05 * (1 - dot(normalizedVertNorm, lightDir)), 0.005);
// 'Percentage Close Filtering'.
// Basically get soft shadows by averaging this texel and surrounding ones
float shadow = 0;
vec2 texelSize = 1 / textureSize(spotLightShadowMaps, 0).xy;
for(int x = -1; x <= 1; x++)
{
for(int y = -1; y <= 1; y++)
{
float pcfDepth = texture(spotLightShadowMaps, vec3(projCoords.xy + vec2(x, y) * texelSize, lightIndex)).r;
// If our depth is larger than the lights closest depth at the texel we checked (projCoords),
// then there is something closer to the light than us, and so we are in shadow
shadow += currentDepth - bias > pcfDepth ? 1 : 0;
}
}
shadow /= 9;
return shadow;
}
vec3 CalcSpotLight(SpotLight light, int lightIndex)
{
if (light.innerCutoff == 0)
return vec3(0);
@ -195,7 +266,7 @@ vec3 CalcSpotLight(SpotLight light)
// light after outer cutoff
float theta = dot(fragToLightDir, normalize(-light.dir));
float epsilon = (light.innerCutoff - light.outerCutoff);
float intensity = clamp((theta - light.outerCutoff) / epsilon, 0.0, 1);
float intensity = clamp((theta - light.outerCutoff) / epsilon, float(0), float(1));
if (intensity == 0)
return vec3(0);
@ -209,7 +280,10 @@ vec3 CalcSpotLight(SpotLight light)
float specularAmount = pow(max(dot(normalizedVertNorm, halfwayDir), 0.0), material.shininess);
vec3 finalSpecular = specularAmount * light.specularColor * specularTexColor.rgb;
return (finalDiffuse + finalSpecular) * intensity;
// Shadow
float shadow = CalcSpotShadow(fragToLightDir, lightIndex);
return (finalDiffuse + finalSpecular) * intensity * (1 - shadow);
}
void main()
@ -227,12 +301,12 @@ void main()
for (int i = 0; i < NUM_POINT_LIGHTS; i++)
{
finalColor += CalcPointLight(pointLights[i]);
finalColor += CalcPointLight(pointLights[i], i);
}
for (int i = 0; i < NUM_SPOT_LIGHTS; i++)
{
finalColor += CalcSpotLight(spotLights[i]);
finalColor += CalcSpotLight(spotLights[i], i);
}
vec3 finalEmission = emissionTexColor.rgb;

View File

@ -6,32 +6,48 @@ import (
)
type ShaderProgram struct {
ID uint32
VertShaderID uint32
FragShaderID uint32
Id uint32
VertShaderId uint32
FragShaderId uint32
GeomShaderId uint32
}
func (sp *ShaderProgram) AttachShader(shader Shader) {
gl.AttachShader(sp.ID, shader.ID)
switch shader.ShaderType {
case VertexShaderType:
sp.VertShaderID = shader.ID
case FragmentShaderType:
sp.FragShaderID = shader.ID
gl.AttachShader(sp.Id, shader.Id)
switch shader.Type {
case ShaderType_Vertex:
sp.VertShaderId = shader.Id
case ShaderType_Fragment:
sp.FragShaderId = shader.Id
case ShaderType_Geometry:
sp.GeomShaderId = shader.Id
default:
logging.ErrLog.Println("Unknown shader type ", shader.ShaderType, " for ID ", shader.ID)
logging.ErrLog.Fatalf("Unknown shader type '%d' for shader id '%d'\n", shader.Type, shader.Id)
}
}
func (sp *ShaderProgram) Link() {
gl.LinkProgram(sp.ID)
gl.LinkProgram(sp.Id)
if sp.VertShaderID != 0 {
gl.DeleteShader(sp.VertShaderID)
if sp.VertShaderId != 0 {
gl.DeleteShader(sp.VertShaderId)
}
if sp.FragShaderID != 0 {
gl.DeleteShader(sp.FragShaderID)
if sp.FragShaderId != 0 {
gl.DeleteShader(sp.FragShaderId)
}
if sp.GeomShaderId != 0 {
gl.DeleteShader(sp.GeomShaderId)
}
}
func (s *ShaderProgram) Bind() {
gl.UseProgram(s.Id)
}
func (s *ShaderProgram) UnBind() {
gl.UseProgram(0)
}

View File

@ -1,10 +1,31 @@
package shaders
import "github.com/go-gl/gl/v4.1-core/gl"
import (
"github.com/bloeys/nmage/logging"
"github.com/go-gl/gl/v4.1-core/gl"
)
type ShaderType int
type ShaderType int32
func (s ShaderType) ToGl() uint32 {
switch s {
case ShaderType_Vertex:
return gl.VERTEX_SHADER
case ShaderType_Fragment:
return gl.FRAGMENT_SHADER
case ShaderType_Geometry:
return gl.GEOMETRY_SHADER
default:
logging.ErrLog.Fatalf("Unknown shader type '%d'\n", s)
return 0
}
}
const (
VertexShaderType ShaderType = gl.VERTEX_SHADER
FragmentShaderType ShaderType = gl.FRAGMENT_SHADER
ShaderType_Unknown ShaderType = iota
ShaderType_Vertex
ShaderType_Fragment
ShaderType_Geometry
)

View File

@ -3,6 +3,7 @@ package shaders
import (
"bytes"
"errors"
"fmt"
"os"
"strings"
@ -11,12 +12,13 @@ import (
)
type Shader struct {
ID uint32
ShaderType ShaderType
Id uint32
Type ShaderType
}
func (s Shader) Delete() {
gl.DeleteShader(s.ID)
func (s *Shader) Delete() {
gl.DeleteShader(s.Id)
s.Id = 0
}
func NewShaderProgram() (ShaderProgram, error) {
@ -26,7 +28,7 @@ func NewShaderProgram() (ShaderProgram, error) {
return ShaderProgram{}, errors.New("failed to create shader program")
}
return ShaderProgram{ID: id}, nil
return ShaderProgram{Id: id}, nil
}
func LoadAndCompileCombinedShader(shaderPath string) (ShaderProgram, error) {
@ -43,8 +45,8 @@ func LoadAndCompileCombinedShader(shaderPath string) (ShaderProgram, error) {
func LoadAndCompileCombinedShaderSrc(shaderSrc []byte) (ShaderProgram, error) {
shaderSources := bytes.Split(shaderSrc, []byte("//shader:"))
if len(shaderSources) == 1 {
return ShaderProgram{}, errors.New("failed to read combined shader. Did not find '//shader:vertex' or '//shader:fragment'")
if len(shaderSources) < 2 {
return ShaderProgram{}, errors.New("failed to read combined shader. The minimum shader types to have are '//shader:vertex' and '//shader:fragment'")
}
shdrProg, err := NewShaderProgram()
@ -65,12 +67,15 @@ func LoadAndCompileCombinedShaderSrc(shaderSrc []byte) (ShaderProgram, error) {
var shdrType ShaderType
if bytes.HasPrefix(src, []byte("vertex")) {
src = src[6:]
shdrType = VertexShaderType
shdrType = ShaderType_Vertex
} else if bytes.HasPrefix(src, []byte("fragment")) {
src = src[8:]
shdrType = FragmentShaderType
shdrType = ShaderType_Fragment
} else if bytes.HasPrefix(src, []byte("geometry")) {
src = src[8:]
shdrType = ShaderType_Geometry
} else {
return ShaderProgram{}, errors.New("unknown shader type. Must be '//shader:vertex' or '//shader:fragment'")
return ShaderProgram{}, errors.New("unknown shader type. Must be '//shader:vertex' or '//shader:fragment' or '//shader:geometry'")
}
shdr, err := CompileShaderOfType(src, shdrType)
@ -83,7 +88,15 @@ func LoadAndCompileCombinedShaderSrc(shaderSrc []byte) (ShaderProgram, error) {
}
if loadedShdrCount == 0 {
return ShaderProgram{}, errors.New("no valid shaders found. Please put '//shader:vertex' or '//shader:fragment' before your shaders")
return ShaderProgram{}, errors.New("no valid shaders found. Please put '//shader:vertex' or '//shader:fragment' or '//shader:geometry' before your shaders")
}
if shdrProg.VertShaderId == 0 {
return ShaderProgram{}, errors.New("no valid vertex shader found. Please put '//shader:vertex' before your vertex shader")
}
if shdrProg.FragShaderId == 0 {
return ShaderProgram{}, errors.New("no valid fragment shader found. Please put '//shader:fragment' before your vertex shader")
}
shdrProg.Link()
@ -92,41 +105,40 @@ func LoadAndCompileCombinedShaderSrc(shaderSrc []byte) (ShaderProgram, error) {
func CompileShaderOfType(shaderSource []byte, shaderType ShaderType) (Shader, error) {
shaderID := gl.CreateShader(uint32(shaderType))
if shaderID == 0 {
logging.ErrLog.Println("Failed to create shader.")
return Shader{}, errors.New("failed to create shader")
shaderId := gl.CreateShader(shaderType.ToGl())
if shaderId == 0 {
return Shader{}, fmt.Errorf("failed to create OpenGl shader. OpenGl Error=%d", gl.GetError())
}
//Load shader source and compile
shaderCStr, shaderFree := gl.Strs(string(shaderSource) + "\x00")
defer shaderFree()
gl.ShaderSource(shaderID, 1, shaderCStr, nil)
gl.ShaderSource(shaderId, 1, shaderCStr, nil)
gl.CompileShader(shaderID)
if err := getShaderCompileErrors(shaderID); err != nil {
gl.DeleteShader(shaderID)
gl.CompileShader(shaderId)
if err := getShaderCompileErrors(shaderId); err != nil {
gl.DeleteShader(shaderId)
return Shader{}, err
}
return Shader{ID: shaderID, ShaderType: shaderType}, nil
return Shader{Id: shaderId, Type: shaderType}, nil
}
func getShaderCompileErrors(shaderID uint32) error {
func getShaderCompileErrors(shaderId uint32) error {
var compiledSuccessfully int32
gl.GetShaderiv(shaderID, gl.COMPILE_STATUS, &compiledSuccessfully)
gl.GetShaderiv(shaderId, gl.COMPILE_STATUS, &compiledSuccessfully)
if compiledSuccessfully == gl.TRUE {
return nil
}
var logLength int32
gl.GetShaderiv(shaderID, gl.INFO_LOG_LENGTH, &logLength)
gl.GetShaderiv(shaderId, gl.INFO_LOG_LENGTH, &logLength)
log := gl.Str(strings.Repeat("\x00", int(logLength)))
gl.GetShaderInfoLog(shaderID, logLength, nil, log)
gl.GetShaderInfoLog(shaderId, logLength, nil, log)
errMsg := gl.GoStr(log)
logging.ErrLog.Println("Compilation of shader with id ", shaderID, " failed. Err: ", errMsg)
logging.ErrLog.Println("Compilation of shader with id ", shaderId, " failed. Err: ", errMsg)
return errors.New(errMsg)
}