Compare commits

...

18 Commits

28 changed files with 1863 additions and 517 deletions

5
.gitignore vendored
View File

@ -15,4 +15,7 @@
vendor/
.vscode/
imgui.ini
*~
*~
# Custom
*.pprof

View File

@ -19,7 +19,17 @@ import (
type ColorFormat int
const (
ColorFormat_RGBA8 ColorFormat = iota
ColorFormat_Unknown ColorFormat = iota
ColorFormat_RGBA8
)
var (
DefaultBlackTexId Texture
DefaultWhiteTexId Texture
DefaultDiffuseTexId Texture
DefaultSpecularTexId Texture
DefaultNormalTexId Texture
DefaultEmissionTexId Texture
)
type Texture struct {

View File

@ -10,8 +10,10 @@ import (
type BufUsage int
const (
BufUsage_Unknown BufUsage = iota
//Buffer is set only once and used many times
BufUsage_Static BufUsage = iota
BufUsage_Static
//Buffer is changed a lot and used many times
BufUsage_Dynamic
//Buffer is set only once and used by the GPU at most a few times

View File

@ -1,6 +1,7 @@
package buffers
import (
"github.com/bloeys/nmage/assert"
"github.com/bloeys/nmage/logging"
"github.com/go-gl/gl/v4.1-core/gl"
)
@ -10,7 +11,10 @@ type FramebufferAttachmentType int32
const (
FramebufferAttachmentType_Unknown FramebufferAttachmentType = iota
FramebufferAttachmentType_Texture
FramebufferAttachmentType_Texture_Array
FramebufferAttachmentType_Renderbuffer
FramebufferAttachmentType_Cubemap
FramebufferAttachmentType_Cubemap_Array
)
func (f FramebufferAttachmentType) IsValid() bool {
@ -18,7 +22,13 @@ func (f FramebufferAttachmentType) IsValid() bool {
switch f {
case FramebufferAttachmentType_Texture:
fallthrough
case FramebufferAttachmentType_Texture_Array:
fallthrough
case FramebufferAttachmentType_Renderbuffer:
fallthrough
case FramebufferAttachmentType_Cubemap:
fallthrough
case FramebufferAttachmentType_Cubemap_Array:
return true
default:
@ -32,6 +42,7 @@ const (
FramebufferAttachmentDataFormat_Unknown FramebufferAttachmentDataFormat = iota
FramebufferAttachmentDataFormat_R32Int
FramebufferAttachmentDataFormat_RGBA8
FramebufferAttachmentDataFormat_RGBAF16
FramebufferAttachmentDataFormat_SRGBA
FramebufferAttachmentDataFormat_DepthF32
FramebufferAttachmentDataFormat_Depth24Stencil8
@ -40,7 +51,8 @@ const (
func (f FramebufferAttachmentDataFormat) IsColorFormat() bool {
return f == FramebufferAttachmentDataFormat_R32Int ||
f == FramebufferAttachmentDataFormat_RGBA8 ||
f == FramebufferAttachmentDataFormat_SRGBA
f == FramebufferAttachmentDataFormat_SRGBA ||
f == FramebufferAttachmentDataFormat_RGBAF16
}
func (f FramebufferAttachmentDataFormat) IsDepthFormat() bool {
@ -55,6 +67,8 @@ func (f FramebufferAttachmentDataFormat) GlInternalFormat() int32 {
return gl.R32I
case FramebufferAttachmentDataFormat_RGBA8:
return gl.RGB8
case FramebufferAttachmentDataFormat_RGBAF16:
return gl.RGBA16F
case FramebufferAttachmentDataFormat_SRGBA:
return gl.SRGB_ALPHA
case FramebufferAttachmentDataFormat_DepthF32:
@ -75,6 +89,8 @@ func (f FramebufferAttachmentDataFormat) GlFormat() uint32 {
case FramebufferAttachmentDataFormat_RGBA8:
fallthrough
case FramebufferAttachmentDataFormat_RGBAF16:
fallthrough
case FramebufferAttachmentDataFormat_SRGBA:
return gl.RGBA
@ -90,6 +106,33 @@ func (f FramebufferAttachmentDataFormat) GlFormat() uint32 {
}
}
func (f FramebufferAttachmentDataFormat) GlComponentType() uint32 {
switch f {
case FramebufferAttachmentDataFormat_R32Int:
return gl.INT
case FramebufferAttachmentDataFormat_RGBA8:
fallthrough
case FramebufferAttachmentDataFormat_SRGBA:
return gl.UNSIGNED_BYTE
case FramebufferAttachmentDataFormat_RGBAF16:
// Seems this is fine to be float instead of half float
fallthrough
case FramebufferAttachmentDataFormat_DepthF32:
return gl.FLOAT
case FramebufferAttachmentDataFormat_Depth24Stencil8:
return gl.UNSIGNED_INT_24_8
default:
logging.ErrLog.Fatalf("unknown framebuffer attachment data format. Format=%d\n", f)
return 0
}
}
type FramebufferAttachment struct {
Id uint32
Type FramebufferAttachmentType
@ -114,7 +157,7 @@ func (fbo *Framebuffer) BindWithViewport() {
gl.Viewport(0, 0, int32(fbo.Width), int32(fbo.Height))
}
// Clear calls gl.Clear with the fob's clear flags.
// Clear calls gl.Clear with the fbo's clear flags.
// Note that the fbo must be complete and bound.
// Calling this without a bound fbo will clear something else, like your screen.
func (fbo *Framebuffer) Clear() {
@ -169,6 +212,14 @@ func (fbo *Framebuffer) NewColorAttachment(
logging.ErrLog.Fatalf("failed creating color attachment for framebuffer due to unknown attachment type. Type=%d\n", attachType)
}
if attachType == FramebufferAttachmentType_Cubemap || attachType == FramebufferAttachmentType_Cubemap_Array {
logging.ErrLog.Fatalf("failed creating color attachment because cubemaps can not be color attachments (at least in this implementation. You might be able to do it manually)\n")
}
if attachType == FramebufferAttachmentType_Texture_Array {
logging.ErrLog.Fatalf("failed creating color attachment because texture arrays can not be color attachments (implementation can be updated to support it or you can do it manually)\n")
}
if !attachFormat.IsColorFormat() {
logging.ErrLog.Fatalf("failed creating color attachment for framebuffer due to attachment data format not being a valid color type. Data format=%d\n", attachFormat)
}
@ -189,7 +240,17 @@ func (fbo *Framebuffer) NewColorAttachment(
}
gl.BindTexture(gl.TEXTURE_2D, a.Id)
gl.TexImage2D(gl.TEXTURE_2D, 0, attachFormat.GlInternalFormat(), int32(fbo.Width), int32(fbo.Height), 0, attachFormat.GlFormat(), gl.UNSIGNED_BYTE, nil)
gl.TexImage2D(
gl.TEXTURE_2D,
0,
attachFormat.GlInternalFormat(),
int32(fbo.Width),
int32(fbo.Height),
0,
attachFormat.GlFormat(),
attachFormat.GlComponentType(),
nil,
)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR)
@ -256,6 +317,14 @@ func (fbo *Framebuffer) NewDepthAttachment(
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer due to attachment data format not being a valid depth-stencil type. Data format=%d\n", attachFormat)
}
if attachType == FramebufferAttachmentType_Cubemap_Array {
logging.ErrLog.Fatalf("failed creating cubemap array depth attachment because 'NewDepthCubemapArrayAttachment' must be used for that\n")
}
if attachType == FramebufferAttachmentType_Texture_Array {
logging.ErrLog.Fatalf("failed creating texture array depth attachment because 'NewDepthTextureArrayAttachment' must be used for that\n")
}
a := FramebufferAttachment{
Type: attachType,
Format: attachFormat,
@ -272,7 +341,17 @@ func (fbo *Framebuffer) NewDepthAttachment(
}
gl.BindTexture(gl.TEXTURE_2D, a.Id)
gl.TexImage2D(gl.TEXTURE_2D, 0, attachFormat.GlInternalFormat(), int32(fbo.Width), int32(fbo.Height), 0, attachFormat.GlFormat(), gl.FLOAT, nil)
gl.TexImage2D(
gl.TEXTURE_2D,
0,
attachFormat.GlInternalFormat(),
int32(fbo.Width),
int32(fbo.Height),
0,
attachFormat.GlFormat(),
attachFormat.GlComponentType(),
nil,
)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
@ -304,6 +383,40 @@ func (fbo *Framebuffer) NewDepthAttachment(
// Attach to fbo
gl.FramebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, a.Id)
} else if attachType == FramebufferAttachmentType_Cubemap {
// Create cubemap
gl.GenTextures(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindTexture(gl.TEXTURE_CUBE_MAP, a.Id)
for i := 0; i < 6; i++ {
gl.TexImage2D(
uint32(gl.TEXTURE_CUBE_MAP_POSITIVE_X+i),
0,
attachFormat.GlInternalFormat(),
int32(fbo.Width),
int32(fbo.Height),
0,
attachFormat.GlFormat(),
attachFormat.GlComponentType(),
nil,
)
}
gl.TexParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_WRAP_R, gl.CLAMP_TO_EDGE)
gl.BindTexture(gl.TEXTURE_2D, 0)
// Attach to fbo
gl.FramebufferTexture(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, a.Id, 0)
}
fbo.UnBind()
@ -311,6 +424,125 @@ func (fbo *Framebuffer) NewDepthAttachment(
fbo.Attachments = append(fbo.Attachments, a)
}
func (fbo *Framebuffer) NewDepthCubemapArrayAttachment(
attachFormat FramebufferAttachmentDataFormat,
numCubemaps int32,
) {
if fbo.HasDepthAttachment() {
logging.ErrLog.Fatalf("failed creating cubemap array depth attachment for framebuffer because a depth attachment already exists\n")
}
if !attachFormat.IsDepthFormat() {
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer due to attachment data format not being a valid depth-stencil type. Data format=%d\n", attachFormat)
}
a := FramebufferAttachment{
Type: FramebufferAttachmentType_Cubemap_Array,
Format: attachFormat,
}
fbo.Bind()
// Create cubemap array
gl.GenTextures(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindTexture(gl.TEXTURE_CUBE_MAP_ARRAY, a.Id)
gl.TexImage3D(
gl.TEXTURE_CUBE_MAP_ARRAY,
0,
attachFormat.GlInternalFormat(),
int32(fbo.Width),
int32(fbo.Height),
6*numCubemaps,
0,
attachFormat.GlFormat(),
attachFormat.GlComponentType(),
nil,
)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP_ARRAY, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP_ARRAY, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP_ARRAY, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP_ARRAY, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE)
gl.TexParameteri(gl.TEXTURE_CUBE_MAP_ARRAY, gl.TEXTURE_WRAP_R, gl.CLAMP_TO_EDGE)
gl.BindTexture(gl.TEXTURE_2D, 0)
// Attach to fbo
gl.FramebufferTexture(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, a.Id, 0)
fbo.UnBind()
fbo.ClearFlags |= gl.DEPTH_BUFFER_BIT
fbo.Attachments = append(fbo.Attachments, a)
}
func (fbo *Framebuffer) NewDepthTextureArrayAttachment(
attachFormat FramebufferAttachmentDataFormat,
numTextures int32,
) {
if fbo.HasDepthAttachment() {
logging.ErrLog.Fatalf("failed creating texture array depth attachment for framebuffer because a depth attachment already exists\n")
}
if !attachFormat.IsDepthFormat() {
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer due to attachment data format not being a valid depth-stencil type. Data format=%d\n", attachFormat)
}
a := FramebufferAttachment{
Type: FramebufferAttachmentType_Texture_Array,
Format: attachFormat,
}
fbo.Bind()
// Create cubemap array
gl.GenTextures(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindTexture(gl.TEXTURE_2D_ARRAY, a.Id)
gl.TexImage3D(
gl.TEXTURE_2D_ARRAY,
0,
attachFormat.GlInternalFormat(),
int32(fbo.Width),
int32(fbo.Height),
numTextures,
0,
attachFormat.GlFormat(),
attachFormat.GlComponentType(),
nil,
)
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
// This is so that any sampling outside the depth map gives a full depth value.
// Useful for example when doing shadow maps where we want things outside
// the range of the texture to not show shadow
borderColor := []float32{1, 1, 1, 1}
gl.TexParameterfv(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_BORDER_COLOR, &borderColor[0])
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_BORDER)
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_BORDER)
gl.BindTexture(gl.TEXTURE_2D_ARRAY, 0)
// Attach to fbo
gl.FramebufferTexture(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, a.Id, 0)
fbo.UnBind()
fbo.ClearFlags |= gl.DEPTH_BUFFER_BIT
fbo.Attachments = append(fbo.Attachments, a)
}
func (fbo *Framebuffer) NewDepthStencilAttachment(
attachType FramebufferAttachmentType,
attachFormat FramebufferAttachmentDataFormat,
@ -344,7 +576,17 @@ func (fbo *Framebuffer) NewDepthStencilAttachment(
}
gl.BindTexture(gl.TEXTURE_2D, a.Id)
gl.TexImage2D(gl.TEXTURE_2D, 0, attachFormat.GlInternalFormat(), int32(fbo.Width), int32(fbo.Height), 0, attachFormat.GlFormat(), gl.UNSIGNED_INT_24_8, nil)
gl.TexImage2D(
gl.TEXTURE_2D,
0,
attachFormat.GlInternalFormat(),
int32(fbo.Width),
int32(fbo.Height),
0,
attachFormat.GlFormat(),
attachFormat.GlComponentType(),
nil,
)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
@ -374,6 +616,28 @@ func (fbo *Framebuffer) NewDepthStencilAttachment(
fbo.Attachments = append(fbo.Attachments, a)
}
// SetCubemapArrayLayerFace 'binds' a single face of a cubemap from the cubemap
// array to the fbo, such that rendering only affects that one face and the others inaccessible.
//
// If this is not called, the default is that the entire cubemap array and all the faces in it
// are bound and available for use when binding the fbo.
func (fbo *Framebuffer) SetCubemapArrayLayerFace(layerFace int32) {
for i := 0; i < len(fbo.Attachments); i++ {
a := &fbo.Attachments[i]
if a.Type != FramebufferAttachmentType_Cubemap_Array {
continue
}
assert.T(a.Format.IsDepthFormat(), "SetCubemapFromArray called but a cubemap array is set on a color attachment, which is not currently handled. Code must be updated!")
gl.FramebufferTextureLayer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, a.Id, 0, layerFace)
return
}
logging.ErrLog.Fatalf("SetCubemapFromArray failed because no cubemap array attachment was found on fbo. Fbo=%+v\n", *fbo)
}
func (fbo *Framebuffer) Delete() {
if fbo.Id == 0 {

View File

@ -41,7 +41,7 @@ func (c *Camera) Update() {
c.ViewMat = gglm.LookAtRH(&c.Pos, c.Pos.Clone().Add(&c.Forward), &c.WorldUp).Mat4
if c.Type == Type_Perspective {
c.ProjMat = *gglm.Perspective(c.Fov, c.AspectRatio, c.NearClip, c.FarClip)
c.ProjMat = gglm.Perspective(c.Fov, c.AspectRatio, c.NearClip, c.FarClip)
} else {
c.ProjMat = gglm.Ortho(c.Left, c.Right, c.Top, c.Bottom, c.NearClip, c.FarClip).Mat4
}
@ -59,9 +59,9 @@ func (c *Camera) UpdateRotation(pitch, yaw float32) {
c.Update()
}
func NewPerspective(pos, forward, worldUp *gglm.Vec3, nearClip, farClip, fovRadians, aspectRatio float32) *Camera {
func NewPerspective(pos, forward, worldUp *gglm.Vec3, nearClip, farClip, fovRadians, aspectRatio float32) Camera {
cam := &Camera{
cam := Camera{
Type: Type_Perspective,
Pos: *pos,
Forward: *forward,
@ -78,9 +78,9 @@ func NewPerspective(pos, forward, worldUp *gglm.Vec3, nearClip, farClip, fovRadi
return cam
}
func NewOrthographic(pos, forward, worldUp *gglm.Vec3, nearClip, farClip, left, right, top, bottom float32) *Camera {
func NewOrthographic(pos, forward, worldUp *gglm.Vec3, nearClip, farClip, left, right, top, bottom float32) Camera {
cam := &Camera{
cam := Camera{
Type: Type_Orthographic,
Pos: *pos,
Forward: *forward,

View File

@ -1,10 +1,13 @@
package engine
import (
"image"
"image/color"
"runtime"
imgui "github.com/AllenDang/cimgui-go"
"github.com/bloeys/nmage/assert"
"github.com/bloeys/nmage/assets"
"github.com/bloeys/nmage/input"
"github.com/bloeys/nmage/renderer"
"github.com/bloeys/nmage/timing"
@ -33,25 +36,12 @@ type Window struct {
func (w *Window) handleInputs() {
input.EventLoopStart()
imIo := imgui.CurrentIO()
imguiCaptureMouse := imIo.WantCaptureMouse()
imguiCaptureKeyboard := imIo.WantCaptureKeyboard()
// These two are to fix a bug where state isn't cleared
// even after imgui captures the keyboard/mouse.
//
// For example, if player is moving due to key held and then imgui captures the keyboard,
// the player keeps moving even when the key is no longer pressed because the input system never
// receives the key up event.
if imguiCaptureMouse {
input.ClearMouseState()
}
if imguiCaptureKeyboard {
input.ClearKeyboardState()
}
input.EventLoopStart(imguiCaptureMouse, imguiCaptureKeyboard)
for event := sdl.PollEvent(); event != nil; event = sdl.PollEvent() {
@ -65,46 +55,27 @@ func (w *Window) handleInputs() {
case *sdl.MouseWheelEvent:
if !imguiCaptureMouse {
input.HandleMouseWheelEvent(e)
}
input.HandleMouseWheelEvent(e)
imIo.AddMouseWheelDelta(float32(e.X), float32(e.Y))
case *sdl.KeyboardEvent:
if !imguiCaptureKeyboard {
input.HandleKeyboardEvent(e)
}
input.HandleKeyboardEvent(e)
// Send modifier key updates to imgui (based on the imgui SDL backend)
imIo.AddKeyEvent(imgui.ModCtrl, e.Keysym.Mod&sdl.KMOD_CTRL != 0)
imIo.AddKeyEvent(imgui.ModShift, e.Keysym.Mod&sdl.KMOD_SHIFT != 0)
imIo.AddKeyEvent(imgui.ModAlt, e.Keysym.Mod&sdl.KMOD_ALT != 0)
imIo.AddKeyEvent(imgui.ModSuper, e.Keysym.Mod&sdl.KMOD_GUI != 0)
imIo.AddKeyEvent(nmageimgui.SdlScancodeToImGuiKey(e.Keysym.Scancode), e.Type == sdl.KEYDOWN)
// Send modifier key updates to imgui
if e.Keysym.Sym == sdl.K_LCTRL || e.Keysym.Sym == sdl.K_RCTRL {
imIo.SetKeyCtrl(e.Type == sdl.KEYDOWN)
}
if e.Keysym.Sym == sdl.K_LSHIFT || e.Keysym.Sym == sdl.K_RSHIFT {
imIo.SetKeyShift(e.Type == sdl.KEYDOWN)
}
if e.Keysym.Sym == sdl.K_LALT || e.Keysym.Sym == sdl.K_RALT {
imIo.SetKeyAlt(e.Type == sdl.KEYDOWN)
}
if e.Keysym.Sym == sdl.K_LGUI || e.Keysym.Sym == sdl.K_RGUI {
imIo.SetKeySuper(e.Type == sdl.KEYDOWN)
}
case *sdl.TextInputEvent:
imIo.AddInputCharactersUTF8(e.GetText())
case *sdl.MouseButtonEvent:
if !imguiCaptureMouse {
input.HandleMouseBtnEvent(e)
}
input.HandleMouseBtnEvent(e)
isPressed := e.State == sdl.PRESSED
if e.Button == sdl.BUTTON_LEFT {
@ -117,9 +88,7 @@ func (w *Window) handleInputs() {
case *sdl.MouseMotionEvent:
if !imguiCaptureMouse {
input.HandleMouseMotionEvent(e)
}
input.HandleMouseMotionEvent(e)
case *sdl.WindowEvent:
@ -201,38 +170,47 @@ func initSDL() error {
return nil
}
func CreateOpenGLWindow(title string, x, y, width, height int32, flags WindowFlags, rend renderer.Render) (*Window, error) {
func CreateOpenGLWindow(title string, x, y, width, height int32, flags WindowFlags, rend renderer.Render) (Window, error) {
return createWindow(title, x, y, width, height, WindowFlags_OPENGL|flags, rend)
}
func CreateOpenGLWindowCentered(title string, width, height int32, flags WindowFlags, rend renderer.Render) (*Window, error) {
func CreateOpenGLWindowCentered(title string, width, height int32, flags WindowFlags, rend renderer.Render) (Window, error) {
return createWindow(title, sdl.WINDOWPOS_CENTERED, sdl.WINDOWPOS_CENTERED, width, height, WindowFlags_OPENGL|flags, rend)
}
func createWindow(title string, x, y, width, height int32, flags WindowFlags, rend renderer.Render) (*Window, error) {
func createWindow(title string, x, y, width, height int32, flags WindowFlags, rend renderer.Render) (Window, error) {
assert.T(isInited, "engine.Init() was not called!")
sdlWin, err := sdl.CreateWindow(title, x, y, width, height, uint32(flags))
if err != nil {
return nil, err
}
win := &Window{
SDLWin: sdlWin,
win := Window{
SDLWin: nil,
EventCallbacks: make([]func(sdl.Event), 0),
Rend: rend,
}
win.GlCtx, err = sdlWin.GLCreateContext()
var err error
win.SDLWin, err = sdl.CreateWindow(title, x, y, width, height, uint32(flags))
if err != nil {
return nil, err
return win, err
}
win.GlCtx, err = win.SDLWin.GLCreateContext()
if err != nil {
return win, err
}
err = initOpenGL()
if err != nil {
return nil, err
return win, err
}
setupDefaultTextures()
// Get rid of the blinding white startup screen (unfortunately there is still one frame of white)
gl.Clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT | gl.STENCIL_BUFFER_BIT)
win.SDLWin.GLSwap()
return win, err
}
@ -254,6 +232,58 @@ func initOpenGL() error {
gl.BlendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA)
gl.ClearColor(0, 0, 0, 1)
return nil
}
func setupDefaultTextures() error {
// 1x1 black texture
defaultBlackImg := image.NewNRGBA(image.Rect(0, 0, 1, 1))
defaultBlackImg.Set(0, 0, color.NRGBA{R: 0, G: 0, B: 0, A: 1})
defaultBlackImgTex, err := assets.LoadTextureInMemPngImg(defaultBlackImg, &assets.TextureLoadOptions{NoSrgba: true})
if err != nil {
return err
}
assets.DefaultBlackTexId = defaultBlackImgTex
// 1x1 white texture
defaultWhiteImg := image.NewNRGBA(image.Rect(0, 0, 1, 1))
defaultWhiteImg.Set(0, 0, color.NRGBA{R: 255, G: 255, B: 255, A: 1})
defaultWhiteImgTex, err := assets.LoadTextureInMemPngImg(defaultWhiteImg, &assets.TextureLoadOptions{NoSrgba: true})
if err != nil {
return err
}
assets.DefaultWhiteTexId = defaultWhiteImgTex
// Default diffuse
assets.DefaultDiffuseTexId = defaultWhiteImgTex
// Default specular
assets.DefaultSpecularTexId = defaultBlackImgTex
// Default Normal map which is created to be RGB(0.5,0.5,1), which when multiplied by TBN matrix gives the vertex normal.
// 128 is better than 127 for normal maps. See 'Flat Color' section here: http://wiki.polycount.com/wiki/Normal_map
// Basically, 127 can create seams while 128 looks correct
defaultNormalMapImg := image.NewNRGBA(image.Rect(0, 0, 1, 1))
defaultNormalMapImg.Set(0, 0, color.NRGBA{R: 128, G: 128, B: 255, A: 1})
defaultNormalMapTex, err := assets.LoadTextureInMemPngImg(defaultNormalMapImg, &assets.TextureLoadOptions{NoSrgba: true})
if err != nil {
return err
}
assets.DefaultNormalTexId = defaultNormalMapTex
// Default emission
assets.DefaultEmissionTexId = defaultBlackImgTex
assert.T(assets.DefaultBlackTexId.TexID != 0, "The default black texture handle is zero. Either texture wasn't created or handle wasn't updated")
assert.T(assets.DefaultWhiteTexId.TexID != 0, "The default white texture handle is zero. Either texture wasn't created or handle wasn't updated")
assert.T(assets.DefaultDiffuseTexId.TexID != 0, "The default diffuse texture handle is zero. Either texture wasn't created or handle wasn't updated")
assert.T(assets.DefaultSpecularTexId.TexID != 0, "The default specular texture handle is zero. Either texture wasn't created or handle wasn't updated")
assert.T(assets.DefaultNormalTexId.TexID != 0, "The default normal texture handle is zero. Either texture wasn't created or handle wasn't updated")
assert.T(assets.DefaultEmissionTexId.TexID != 0, "The default emission texture handle is zero. Either texture wasn't created or handle wasn't updated")
return nil
}

2
go.mod
View File

@ -8,7 +8,7 @@ require github.com/go-gl/gl v0.0.0-20211210172815-726fda9656d6
require (
github.com/bloeys/assimp-go v0.4.4
github.com/bloeys/gglm v0.43.0
github.com/bloeys/gglm v0.49.0
)
require (

4
go.sum
View File

@ -2,8 +2,8 @@ github.com/AllenDang/cimgui-go v0.0.0-20230720025235-f2ff398a66b2 h1:3HA/5qD8Rim
github.com/AllenDang/cimgui-go v0.0.0-20230720025235-f2ff398a66b2/go.mod h1:iNfbIyOBN8k3XScMxULbrwYbPsXEAUD0Jb6UwrspQb8=
github.com/bloeys/assimp-go v0.4.4 h1:Yn5e/RpE0Oes0YMBy8O7KkwAO4R/RpgrZPJCt08dVIU=
github.com/bloeys/assimp-go v0.4.4/go.mod h1:my3yRxT7CfOztmvi+0svmwbaqw0KFrxaHxncoyaEIP0=
github.com/bloeys/gglm v0.43.0 h1:ZpOghR3PHfpkigTDh+FqxLsF0gN8CD6s/bWoei6LyxI=
github.com/bloeys/gglm v0.43.0/go.mod h1:qwJQ0WzV191wAMwlGicbfbChbKoSedMk7gFFX6GnyOk=
github.com/bloeys/gglm v0.49.0 h1:YtbyHpszYhjnxw7KVV0LaCdBktRMqfGx/i37EMomxsE=
github.com/bloeys/gglm v0.49.0/go.mod h1:qwJQ0WzV191wAMwlGicbfbChbKoSedMk7gFFX6GnyOk=
github.com/go-gl/gl v0.0.0-20211210172815-726fda9656d6 h1:zDw5v7qm4yH7N8C8uWd+8Ii9rROdgWxQuGoJ9WDXxfk=
github.com/go-gl/gl v0.0.0-20211210172815-726fda9656d6/go.mod h1:9YTyiznxEY1fVinfM7RvRcjRHbw2xLBJ3AAGIT0I4Nw=
github.com/mandykoh/go-parallel v0.1.0 h1:7vJMNMC4dsbgZdkAb2A8tV5ENY1v7VxIO1wzQWZoT8k=

View File

@ -1,6 +1,23 @@
// The input package provides an interface to mouse and keyboard inputs
// like key clicks and releases, along with some higher level constructs like
// pressed/released this frames, double clicks, and normalized inputs.
//
// The input package has two sets of functions for most cases, where one
// is in the form 'xy' and the other 'xyCaptured'. The captured form
// always returns normal events even if the mouse or keyboard are captured
// by the UI system. The 'xy' form however will return zero/false if the
// respective input device is currently captured (with the exception of mouse position, that is always correctly returned).
//
// For most cases, you want to use the 'xy' form. For example, you only want to receive
// key down events for game character movement when the UI isn't capturing the keyboard,
// because otherwise the character will move while typing in a UI textbox.
//
// The functions IsMouseCaptured and IsKeyboardCaptured are also available.
package input
import "github.com/veandco/go-sdl2/sdl"
import (
"github.com/veandco/go-sdl2/sdl"
)
type keyState struct {
Key sdl.Keycode
@ -31,15 +48,22 @@ type mouseWheelState struct {
}
var (
keyMap = make(map[sdl.Keycode]keyState)
mouseBtnMap = make(map[int]mouseBtnState)
mouseMotion = mouseMotionState{}
mouseWheel = mouseWheelState{}
quitRequested bool
mouseWheel = mouseWheelState{}
mouseMotion = mouseMotionState{}
mouseBtnMap = make(map[int]mouseBtnState)
keyMap = make(map[sdl.Keycode]keyState)
isQuitRequested bool
isMouseCaptured bool
isKeyboardCaptured bool
)
func EventLoopStart() {
func EventLoopStart(mouseGotCaptured, keyboardGotCaptured bool) {
isMouseCaptured = mouseGotCaptured
isKeyboardCaptured = keyboardGotCaptured
// Update per-frame state
for k, v := range keyMap {
v.IsPressedThisFrame = false
v.IsReleasedThisFrame = false
@ -59,7 +83,7 @@ func EventLoopStart() {
mouseWheel.XDelta = 0
mouseWheel.YDelta = 0
quitRequested = false
isQuitRequested = false
}
func ClearKeyboardState() {
@ -73,11 +97,19 @@ func ClearMouseState() {
}
func HandleQuitEvent(e *sdl.QuitEvent) {
quitRequested = true
isQuitRequested = true
}
func IsMouseCaptured() bool {
return isMouseCaptured
}
func IsKeyboardCaptured() bool {
return isKeyboardCaptured
}
func IsQuitClicked() bool {
return quitRequested
return isQuitRequested
}
func HandleKeyboardEvent(e *sdl.KeyboardEvent) {
@ -123,18 +155,36 @@ func HandleMouseWheelEvent(e *sdl.MouseWheelEvent) {
mouseWheel.YDelta = e.Y
}
// GetMousePos returns the window coordinates of the mouse
// GetMousePos returns the window coordinates of the mouse regardless of whether the mouse is captured or not
func GetMousePos() (x, y int32) {
return mouseMotion.XPos, mouseMotion.YPos
}
// GetMouseMotion returns how many pixels were moved last frame
func GetMouseMotion() (xDelta, yDelta int32) {
if isMouseCaptured {
return 0, 0
}
return GetMouseMotionCaptured()
}
func GetMouseMotionCaptured() (xDelta, yDelta int32) {
return mouseMotion.XDelta, mouseMotion.YDelta
}
func GetMouseMotionNorm() (xDelta, yDelta int32) {
if isMouseCaptured {
return 0, 0
}
return GetMouseMotionNormCaptured()
}
func GetMouseMotionNormCaptured() (xDelta, yDelta int32) {
x, y := mouseMotion.XDelta, mouseMotion.YDelta
if x > 0 {
x = 1
@ -152,12 +202,31 @@ func GetMouseMotionNorm() (xDelta, yDelta int32) {
}
func GetMouseWheelMotion() (xDelta, yDelta int32) {
if isMouseCaptured {
return 0, 0
}
return GetMouseWheelMotionCaptured()
}
func GetMouseWheelMotionCaptured() (xDelta, yDelta int32) {
return mouseWheel.XDelta, mouseWheel.YDelta
}
// GetMouseWheelXNorm returns 1 if mouse wheel xDelta > 0, -1 if xDelta < 0, and 0 otherwise
func GetMouseWheelXNorm() int32 {
if isMouseCaptured {
return 0
}
return GetMouseWheelXNormCaptured()
}
// GetMouseWheelXNormCaptured returns 1 if mouse wheel xDelta > 0, -1 if xDelta < 0, and 0 otherwise
func GetMouseWheelXNormCaptured() int32 {
if mouseWheel.XDelta > 0 {
return 1
} else if mouseWheel.XDelta < 0 {
@ -167,9 +236,19 @@ func GetMouseWheelXNorm() int32 {
return 0
}
// returns 1 if mouse wheel yDelta > 0, -1 if yDelta < 0, and 0 otherwise
// GetMouseWheelYNorm returns 1 if mouse wheel yDelta > 0, -1 if yDelta < 0, and 0 otherwise
func GetMouseWheelYNorm() int32 {
if isMouseCaptured {
return 0
}
return GetMouseWheelYNormCaptured()
}
// GetMouseWheelYNormCaptured returns 1 if mouse wheel yDelta > 0, -1 if yDelta < 0, and 0 otherwise
func GetMouseWheelYNormCaptured() int32 {
if mouseWheel.YDelta > 0 {
return 1
} else if mouseWheel.YDelta < 0 {
@ -181,6 +260,15 @@ func GetMouseWheelYNorm() int32 {
func KeyClicked(kc sdl.Keycode) bool {
if isKeyboardCaptured {
return false
}
return KeyClickedCaptured(kc)
}
func KeyClickedCaptured(kc sdl.Keycode) bool {
ks, ok := keyMap[kc]
if !ok {
return false
@ -191,6 +279,15 @@ func KeyClicked(kc sdl.Keycode) bool {
func KeyReleased(kc sdl.Keycode) bool {
if isKeyboardCaptured {
return false
}
return KeyReleasedCaptured(kc)
}
func KeyReleasedCaptured(kc sdl.Keycode) bool {
ks, ok := keyMap[kc]
if !ok {
return false
@ -201,6 +298,15 @@ func KeyReleased(kc sdl.Keycode) bool {
func KeyDown(kc sdl.Keycode) bool {
if isKeyboardCaptured {
return false
}
return KeyDownCaptured(kc)
}
func KeyDownCaptured(kc sdl.Keycode) bool {
ks, ok := keyMap[kc]
if !ok {
return false
@ -211,6 +317,15 @@ func KeyDown(kc sdl.Keycode) bool {
func KeyUp(kc sdl.Keycode) bool {
if isKeyboardCaptured {
return false
}
return KeyUpCaptured(kc)
}
func KeyUpCaptured(kc sdl.Keycode) bool {
ks, ok := keyMap[kc]
if !ok {
return true
@ -221,6 +336,15 @@ func KeyUp(kc sdl.Keycode) bool {
func MouseClicked(mb int) bool {
if isMouseCaptured {
return false
}
return MouseClickedCaptued(mb)
}
func MouseClickedCaptued(mb int) bool {
btn, ok := mouseBtnMap[mb]
if !ok {
return false
@ -231,6 +355,15 @@ func MouseClicked(mb int) bool {
func MouseDoubleClicked(mb int) bool {
if isMouseCaptured {
return false
}
return MouseDoubleClickedCaptured(mb)
}
func MouseDoubleClickedCaptured(mb int) bool {
btn, ok := mouseBtnMap[mb]
if !ok {
return false
@ -240,6 +373,16 @@ func MouseDoubleClicked(mb int) bool {
}
func MouseReleased(mb int) bool {
if isMouseCaptured {
return false
}
return MouseReleasedCaptured(mb)
}
func MouseReleasedCaptured(mb int) bool {
btn, ok := mouseBtnMap[mb]
if !ok {
return false
@ -250,6 +393,15 @@ func MouseReleased(mb int) bool {
func MouseDown(mb int) bool {
if isMouseCaptured {
return false
}
return MouseDownCaptued(mb)
}
func MouseDownCaptued(mb int) bool {
btn, ok := mouseBtnMap[mb]
if !ok {
return false
@ -260,6 +412,15 @@ func MouseDown(mb int) bool {
func MouseUp(mb int) bool {
if isMouseCaptured {
return false
}
return MouseUpCaptured(mb)
}
func MouseUpCaptured(mb int) bool {
btn, ok := mouseBtnMap[mb]
if !ok {
return true

841
main.go

File diff suppressed because it is too large Load Diff

View File

@ -3,6 +3,7 @@ package materials
import (
"github.com/bloeys/gglm/gglm"
"github.com/bloeys/nmage/assert"
"github.com/bloeys/nmage/assets"
"github.com/bloeys/nmage/logging"
"github.com/bloeys/nmage/shaders"
"github.com/go-gl/gl/v4.1-core/gl"
@ -11,21 +12,45 @@ import (
type TextureSlot uint32
const (
TextureSlot_Diffuse TextureSlot = 0
TextureSlot_Specular TextureSlot = 1
TextureSlot_Normal TextureSlot = 2
TextureSlot_Emission TextureSlot = 3
TextureSlot_Cubemap TextureSlot = 10
TextureSlot_ShadowMap TextureSlot = 11
TextureSlot_Diffuse TextureSlot = 0
TextureSlot_Specular TextureSlot = 1
TextureSlot_Normal TextureSlot = 2
TextureSlot_Emission TextureSlot = 3
TextureSlot_Cubemap TextureSlot = 10
TextureSlot_Cubemap_Array TextureSlot = 11
TextureSlot_ShadowMap1 TextureSlot = 12
TextureSlot_ShadowMap_Array1 TextureSlot = 13
)
type MaterialSettings uint64
const (
MaterialSettings_None MaterialSettings = iota
MaterialSettings_HasModelMtx MaterialSettings = 1 << (iota - 1)
MaterialSettings_HasNormalMtx
)
func (ms *MaterialSettings) Set(flags MaterialSettings) {
*ms |= flags
}
func (ms *MaterialSettings) Remove(flags MaterialSettings) {
*ms &= ^flags
}
func (ms *MaterialSettings) Has(flags MaterialSettings) bool {
return *ms&flags == flags
}
type Material struct {
Name string
ShaderProg shaders.ShaderProgram
Settings MaterialSettings
UnifLocs map[string]int32
AttribLocs map[string]int32
// @TODO: Do this in a better way?. Perhaps something like how we do fbo attachments? Or keep it?
// Phong shading
DiffuseTex uint32
SpecularTex uint32
@ -35,45 +60,50 @@ type Material struct {
// Shininess of specular highlights
Shininess float32
// Cubemap
CubemapTex uint32
// Cubemaps
CubemapTex uint32
CubemapArrayTex uint32
// Shadowmaps
ShadowMap uint32
ShadowMapTex1 uint32
ShadowMapTexArray1 uint32
}
func (m *Material) Bind() {
gl.UseProgram(m.ShaderProg.ID)
m.ShaderProg.Bind()
if m.DiffuseTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Diffuse))
gl.BindTexture(gl.TEXTURE_2D, m.DiffuseTex)
}
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Diffuse))
gl.BindTexture(gl.TEXTURE_2D, m.DiffuseTex)
if m.SpecularTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Specular))
gl.BindTexture(gl.TEXTURE_2D, m.SpecularTex)
}
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Specular))
gl.BindTexture(gl.TEXTURE_2D, m.SpecularTex)
if m.NormalTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Normal))
gl.BindTexture(gl.TEXTURE_2D, m.NormalTex)
}
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Normal))
gl.BindTexture(gl.TEXTURE_2D, m.NormalTex)
if m.EmissionTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Emission))
gl.BindTexture(gl.TEXTURE_2D, m.EmissionTex)
}
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Emission))
gl.BindTexture(gl.TEXTURE_2D, m.EmissionTex)
// @TODO: Have defaults for these
if m.CubemapTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Cubemap))
gl.BindTexture(gl.TEXTURE_CUBE_MAP, m.CubemapTex)
}
if m.ShadowMap != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap))
gl.BindTexture(gl.TEXTURE_2D, m.ShadowMap)
if m.CubemapArrayTex != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_Cubemap_Array))
gl.BindTexture(gl.TEXTURE_CUBE_MAP_ARRAY, m.CubemapArrayTex)
}
if m.ShadowMapTex1 != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap1))
gl.BindTexture(gl.TEXTURE_2D, m.ShadowMapTex1)
}
if m.ShadowMapTexArray1 != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap_Array1))
gl.BindTexture(gl.TEXTURE_2D_ARRAY, m.ShadowMapTexArray1)
}
}
@ -88,7 +118,7 @@ func (m *Material) GetAttribLoc(attribName string) int32 {
return loc
}
loc = gl.GetAttribLocation(m.ShaderProg.ID, gl.Str(attribName+"\x00"))
loc = gl.GetAttribLocation(m.ShaderProg.Id, gl.Str(attribName+"\x00"))
assert.T(loc != -1, "Attribute '"+attribName+"' doesn't exist on material "+m.Name)
m.AttribLocs[attribName] = loc
return loc
@ -101,7 +131,7 @@ func (m *Material) GetUnifLoc(uniformName string) int32 {
return loc
}
loc = gl.GetUniformLocation(m.ShaderProg.ID, gl.Str(uniformName+"\x00"))
loc = gl.GetUniformLocation(m.ShaderProg.Id, gl.Str(uniformName+"\x00"))
assert.T(loc != -1, "Uniform '"+uniformName+"' doesn't exist on material "+m.Name)
m.UnifLocs[uniformName] = loc
return loc
@ -116,57 +146,77 @@ func (m *Material) DisableAttribute(attribName string) {
}
func (m *Material) SetUnifInt32(uniformName string, val int32) {
gl.ProgramUniform1i(m.ShaderProg.ID, m.GetUnifLoc(uniformName), val)
gl.ProgramUniform1i(m.ShaderProg.Id, m.GetUnifLoc(uniformName), val)
}
func (m *Material) SetUnifFloat32(uniformName string, val float32) {
gl.ProgramUniform1f(m.ShaderProg.ID, m.GetUnifLoc(uniformName), val)
gl.ProgramUniform1f(m.ShaderProg.Id, m.GetUnifLoc(uniformName), val)
}
func (m *Material) SetUnifVec2(uniformName string, vec2 *gglm.Vec2) {
gl.ProgramUniform2fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, &vec2.Data[0])
gl.ProgramUniform2fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, &vec2.Data[0])
}
func (m *Material) SetUnifVec3(uniformName string, vec3 *gglm.Vec3) {
gl.ProgramUniform3fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, &vec3.Data[0])
gl.ProgramUniform3fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, &vec3.Data[0])
}
func (m *Material) SetUnifVec4(uniformName string, vec4 *gglm.Vec4) {
gl.ProgramUniform4fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, &vec4.Data[0])
gl.ProgramUniform4fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, &vec4.Data[0])
}
func (m *Material) SetUnifMat2(uniformName string, mat2 *gglm.Mat2) {
gl.ProgramUniformMatrix2fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, false, &mat2.Data[0][0])
gl.ProgramUniformMatrix2fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, false, &mat2.Data[0][0])
}
func (m *Material) SetUnifMat3(uniformName string, mat3 *gglm.Mat3) {
gl.ProgramUniformMatrix3fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, false, &mat3.Data[0][0])
gl.ProgramUniformMatrix3fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, false, &mat3.Data[0][0])
}
func (m *Material) SetUnifMat4(uniformName string, mat4 *gglm.Mat4) {
gl.ProgramUniformMatrix4fv(m.ShaderProg.ID, m.GetUnifLoc(uniformName), 1, false, &mat4.Data[0][0])
gl.ProgramUniformMatrix4fv(m.ShaderProg.Id, m.GetUnifLoc(uniformName), 1, false, &mat4.Data[0][0])
}
func (m *Material) Delete() {
gl.DeleteProgram(m.ShaderProg.ID)
gl.DeleteProgram(m.ShaderProg.Id)
}
func NewMaterial(matName, shaderPath string) *Material {
func NewMaterial(matName, shaderPath string) Material {
shdrProg, err := shaders.LoadAndCompileCombinedShader(shaderPath)
if err != nil {
logging.ErrLog.Fatalf("Failed to create new material '%s'. Err: %s\n", matName, err.Error())
}
return &Material{Name: matName, ShaderProg: shdrProg, UnifLocs: make(map[string]int32), AttribLocs: make(map[string]int32)}
return Material{
Name: matName,
ShaderProg: shdrProg,
UnifLocs: make(map[string]int32),
AttribLocs: make(map[string]int32),
DiffuseTex: assets.DefaultDiffuseTexId.TexID,
SpecularTex: assets.DefaultSpecularTexId.TexID,
NormalTex: assets.DefaultNormalTexId.TexID,
EmissionTex: assets.DefaultEmissionTexId.TexID,
}
}
func NewMaterialSrc(matName string, shaderSrc []byte) *Material {
func NewMaterialSrc(matName string, shaderSrc []byte) Material {
shdrProg, err := shaders.LoadAndCompileCombinedShaderSrc(shaderSrc)
if err != nil {
logging.ErrLog.Fatalf("Failed to create new material '%s'. Err: %s\n", matName, err.Error())
}
return &Material{Name: matName, ShaderProg: shdrProg, UnifLocs: make(map[string]int32), AttribLocs: make(map[string]int32)}
return Material{
Name: matName,
ShaderProg: shdrProg,
UnifLocs: make(map[string]int32),
AttribLocs: make(map[string]int32),
DiffuseTex: assets.DefaultDiffuseTexId.TexID,
SpecularTex: assets.DefaultSpecularTexId.TexID,
NormalTex: assets.DefaultNormalTexId.TexID,
EmissionTex: assets.DefaultEmissionTexId.TexID,
}
}

View File

@ -16,24 +16,48 @@ type SubMesh struct {
}
type Mesh struct {
Name string
Name string
/*
Vao has the following shader attribute layout:
- Loc0: Pos
- Loc1: Normal
- Loc2: UV0
- Loc3: Tangent
- (Optional) Color
Optional stuff appear in the order in this list, depending on what other optional stuff exists.
For example:
- If color exists it will be in Loc3, otherwise it is unset
*/
Vao buffers.VertexArray
SubMeshes []SubMesh
}
func NewMesh(name, modelPath string, postProcessFlags asig.PostProcess) (*Mesh, error) {
var (
// DefaultMeshLoadFlags are the flags always applied when loading a new mesh regardless
// of what post process flags are used when loading a mesh.
//
// Defaults to: asig.PostProcessTriangulate | asig.PostProcessCalcTangentSpace;
// Note: changing this will break the normal lit shaders, which expect tangents to be there
DefaultMeshLoadFlags asig.PostProcess = asig.PostProcessTriangulate | asig.PostProcessCalcTangentSpace
)
scene, release, err := asig.ImportFile(modelPath, asig.PostProcessTriangulate|postProcessFlags)
func NewMesh(name, modelPath string, postProcessFlags asig.PostProcess) (Mesh, error) {
finalPostProcessFlags := DefaultMeshLoadFlags | postProcessFlags
scene, release, err := asig.ImportFile(modelPath, finalPostProcessFlags)
if err != nil {
return nil, errors.New("Failed to load model. Err: " + err.Error())
return Mesh{}, errors.New("Failed to load model. Err: " + err.Error())
}
defer release()
if len(scene.Meshes) == 0 {
return nil, errors.New("No meshes found in file: " + modelPath)
return Mesh{}, errors.New("No meshes found in file: " + modelPath)
}
mesh := &Mesh{
mesh := Mesh{
Name: name,
Vao: buffers.NewVertexArray(),
SubMeshes: make([]SubMesh, 0, 1),
@ -42,8 +66,17 @@ func NewMesh(name, modelPath string, postProcessFlags asig.PostProcess) (*Mesh,
vbo := buffers.NewVertexBuffer()
ibo := buffers.NewIndexBuffer()
// Initial sizes assuming one submesh that has vertex pos+normals+texCoords, and 3 indices per face
var vertexBufData []float32 = make([]float32, 0, len(scene.Meshes[0].Vertices)*3*3*2)
// Estimate a useful prealloc capacity based on the first submesh that has vertex pos+normals+tangents+texCoords
vertexBufDataCapacity := len(scene.Meshes[0].Vertices) * 3 * 3 * 3 * 2
// Increase capacity depending on what the mesh has
if len(scene.Meshes[0].ColorSets) > 0 && len(scene.Meshes[0].ColorSets[0]) > 0 {
vertexBufDataCapacity *= 4
}
var vertexBufData []float32 = make([]float32, 0, vertexBufDataCapacity)
// Initial size assumes 3 indices per face
var indexBufData []uint32 = make([]uint32, 0, len(scene.Meshes[0].Faces)*3)
// fmt.Printf("\nMesh %s has %d meshe(s) with first mesh having %d vertices\n", name, len(scene.Meshes), len(scene.Meshes[0].Vertices))
@ -52,12 +85,25 @@ func NewMesh(name, modelPath string, postProcessFlags asig.PostProcess) (*Mesh,
sceneMesh := scene.Meshes[i]
// We always want tangents and UV0
if len(sceneMesh.Tangents) == 0 {
sceneMesh.Tangents = make([]gglm.Vec3, len(sceneMesh.Vertices))
}
if len(sceneMesh.TexCoords[0]) == 0 {
sceneMesh.TexCoords[0] = make([]gglm.Vec3, len(sceneMesh.Vertices))
}
layoutToUse := []buffers.Element{{ElementType: buffers.DataTypeVec3}, {ElementType: buffers.DataTypeVec3}, {ElementType: buffers.DataTypeVec2}}
if len(sceneMesh.ColorSets) > 0 && len(sceneMesh.ColorSets[0]) > 0 {
hasColorSet0 := len(sceneMesh.ColorSets) > 0 && len(sceneMesh.ColorSets[0]) > 0
layoutToUse := []buffers.Element{
{ElementType: buffers.DataTypeVec3}, // Position
{ElementType: buffers.DataTypeVec3}, // Normals
{ElementType: buffers.DataTypeVec3}, // Tangents
{ElementType: buffers.DataTypeVec2}, // UV0
}
if hasColorSet0 {
layoutToUse = append(layoutToUse, buffers.Element{ElementType: buffers.DataTypeVec4})
}
@ -79,8 +125,14 @@ func NewMesh(name, modelPath string, postProcessFlags asig.PostProcess) (*Mesh,
}
}
arrs := []arrToInterleave{{V3s: sceneMesh.Vertices}, {V3s: sceneMesh.Normals}, {V2s: v3sToV2s(sceneMesh.TexCoords[0])}}
if len(sceneMesh.ColorSets) > 0 && len(sceneMesh.ColorSets[0]) > 0 {
arrs := []arrToInterleave{
{V3s: sceneMesh.Vertices},
{V3s: sceneMesh.Normals},
{V3s: sceneMesh.Tangents},
{V2s: v3sToV2s(sceneMesh.TexCoords[0])},
}
if hasColorSet0 {
arrs = append(arrs, arrToInterleave{V4s: sceneMesh.ColorSets[0]})
}

View File

@ -29,7 +29,14 @@ func (r *Rend3DGL) DrawMesh(mesh *meshes.Mesh, modelMat *gglm.TrMat, mat *materi
r.BoundMat = mat
}
mat.SetUnifMat4("modelMat", &modelMat.Mat4)
if mat.Settings.Has(materials.MaterialSettings_HasModelMtx) {
mat.SetUnifMat4("modelMat", &modelMat.Mat4)
}
if mat.Settings.Has(materials.MaterialSettings_HasNormalMtx) {
normalMat := modelMat.Clone().InvertAndTranspose().ToMat3()
mat.SetUnifMat3("normalMat", &normalMat)
}
for i := 0; i < len(mesh.SubMeshes); i++ {
gl.DrawElementsBaseVertexWithOffset(gl.TRIANGLES, mesh.SubMeshes[i].IndexCount, gl.UNSIGNED_INT, uintptr(mesh.SubMeshes[i].BaseIndex), mesh.SubMeshes[i].BaseVertex)

View File

@ -0,0 +1,54 @@
//shader:vertex
#version 410
layout(location=0) in vec3 vertPosIn;
uniform mat4 modelMat;
void main()
{
gl_Position = modelMat * vec4(vertPosIn, 1);
}
//shader:geometry
#version 410
layout (triangles) in;
#define NUM_PROJ_VIEW_MATS 4
// 3 * NUM_PROJ_VIEW_MATS
layout (triangle_strip, max_vertices=12) out;
// This is the same number as max spot lights or whatever else is being rendered
uniform mat4 projViewMats[NUM_PROJ_VIEW_MATS];
out vec4 FragPos;
void main()
{
for(int projViewMatIndex = 0; projViewMatIndex < NUM_PROJ_VIEW_MATS; projViewMatIndex++){
gl_Layer = projViewMatIndex;
mat4 projViewMat = projViewMats[projViewMatIndex];
for(int i = 0; i < 3; i++)
{
FragPos = gl_in[i].gl_Position;
gl_Position = projViewMat * FragPos;
EmitVertex();
}
EndPrimitive();
}
}
//shader:fragment
#version 410
in vec4 FragPos;
void main()
{
// This implicitly writes to the depth buffer with no color operations
// Equivalent: gl_FragDepth = gl_FragCoord.z;
}

View File

@ -2,22 +2,19 @@
#version 410
layout(location=0) in vec3 vertPosIn;
layout(location=1) in vec3 vertNormalIn;
layout(location=2) in vec2 vertUV0In;
layout(location=3) in vec3 vertColorIn;
layout(location=2) in vec3 vertTangentIn;
layout(location=3) in vec2 vertUV0In;
layout(location=4) in vec3 vertColorIn;
out vec3 vertNormal;
out vec2 vertUV0;
out vec3 vertColor;
out vec3 fragPos;
//MVP = Model View Projection
uniform mat4 modelMat;
uniform mat4 projViewMat;
void main()
{
vertNormal = mat3(transpose(inverse(modelMat))) * vertNormalIn;
vertUV0 = vertUV0In;
vertColor = vertColorIn;
@ -31,7 +28,6 @@ void main()
#version 410
in vec3 vertColor;
in vec3 vertNormal;
in vec2 vertUV0;
in vec3 fragPos;

View File

@ -0,0 +1,65 @@
//shader:vertex
#version 410
layout(location=0) in vec3 vertPosIn;
uniform mat4 modelMat;
void main()
{
gl_Position = modelMat * vec4(vertPosIn, 1);
}
//shader:geometry
#version 410
layout (triangles) in;
// Cubemap means 6 faces, and the
// input 3 triangle vertices are drawn once per face, so 6*3=18
layout (triangle_strip, max_vertices=18) out;
uniform int cubemapIndex;
uniform mat4 cubemapProjViewMats[6];
out vec4 FragPos;
void main()
{
for(int face = 0; face < 6; ++face)
{
// Built in variable that specifies which cubemap face we are rendering to
// and only works when a cubemap is attached to the active fbo.
//
// We use an additional index here because our fbo has a cubemap array
gl_Layer = (cubemapIndex * 6) + face;
// Transform each triangle vertex
for(int i = 0; i < 3; ++i)
{
FragPos = gl_in[i].gl_Position;
gl_Position = cubemapProjViewMats[face] * FragPos;
EmitVertex();
}
EndPrimitive();
}
}
//shader:fragment
#version 410
in vec4 FragPos;
uniform vec3 lightPos;
uniform float farPlane;
void main()
{
// Get distance between fragment and light source
float lightDistance = length(FragPos.xyz - lightPos);
// Map to [0, 1] by dividing by far plane and use it as our depth
lightDistance = lightDistance / farPlane;
gl_FragDepth = lightDistance;
}

View File

@ -3,26 +3,19 @@
layout(location=0) in vec3 vertPosIn;
layout(location=1) in vec3 vertNormalIn;
layout(location=2) in vec2 vertUV0In;
layout(location=3) in vec3 vertColorIn;
layout(location=2) in vec3 vertTangentIn;
layout(location=3) in vec2 vertUV0In;
layout(location=4) in vec3 vertColorIn;
out vec3 vertNormal;
out vec2 vertUV0;
out vec3 vertColor;
out vec3 fragPos;
//MVP = Model View Projection
uniform mat4 modelMat;
uniform mat4 projViewMat;
void main()
{
// @TODO: Calculate this on the CPU and send it as a uniform
//
// This produces the normal matrix that multiplies with the model normal to produce the
// world space normal. Based on 'One last thing' section from: https://learnopengl.com/Lighting/Basic-Lighting
vertNormal = mat3(transpose(inverse(modelMat))) * vertNormalIn;
vertUV0 = vertUV0In;
vertColor = vertColorIn;
@ -41,7 +34,6 @@ struct Material {
uniform Material material;
in vec3 vertColor;
in vec3 vertNormal;
in vec2 vertUV0;
in vec3 fragPos;

View File

@ -1,52 +1,27 @@
//shader:vertex
#version 410
#define NUM_SPOT_LIGHTS 4
#define NUM_POINT_LIGHTS 8
//
// Inputs
//
layout(location=0) in vec3 vertPosIn;
layout(location=1) in vec3 vertNormalIn;
layout(location=2) in vec2 vertUV0In;
layout(location=3) in vec3 vertColorIn;
out vec3 vertNormal;
out vec2 vertUV0;
out vec3 vertColor;
out vec3 fragPos;
out vec4 fragPosDirLight;
layout(location=2) in vec3 vertTangentIn;
layout(location=3) in vec2 vertUV0In;
layout(location=4) in vec3 vertColorIn;
//
// Uniforms
//
uniform vec3 camPos;
uniform mat4 modelMat;
uniform mat3 normalMat;
uniform mat4 projViewMat;
uniform mat4 dirLightProjViewMat;
void main()
{
// @TODO: Calculate this on the CPU and send it as a uniform
//
// This produces the normal matrix that multiplies with the model normal to produce the
// world space normal. Based on 'One last thing' section from: https://learnopengl.com/Lighting/Basic-Lighting
vertNormal = mat3(transpose(inverse(modelMat))) * vertNormalIn;
vertNormal = mat3(transpose(inverse(modelMat))) * vertNormalIn;
vertUV0 = vertUV0In;
vertColor = vertColorIn;
vec4 modelVert = modelMat * vec4(vertPosIn, 1);
fragPos = modelVert.xyz;
fragPosDirLight = dirLightProjViewMat * vec4(fragPos, 1);
gl_Position = projViewMat * modelVert;
}
//shader:fragment
#version 410
struct Material {
sampler2D diffuse;
sampler2D specular;
// sampler2D normal;
sampler2D emission;
float shininess;
};
uniform Material material;
uniform mat4 spotLightProjViewMats[NUM_SPOT_LIGHTS];
struct DirLight {
vec3 dir;
@ -54,7 +29,6 @@ struct DirLight {
vec3 specularColor;
sampler2D shadowMap;
};
uniform DirLight dirLight;
struct PointLight {
@ -64,9 +38,8 @@ struct PointLight {
float constant;
float linear;
float quadratic;
float farPlane;
};
#define NUM_POINT_LIGHTS 16
uniform PointLight pointLights[NUM_POINT_LIGHTS];
struct SpotLight {
@ -77,35 +50,157 @@ struct SpotLight {
float innerCutoff;
float outerCutoff;
};
#define NUM_SPOT_LIGHTS 4
uniform SpotLight spotLights[NUM_SPOT_LIGHTS];
uniform vec3 camPos;
//
// Outputs
//
out vec2 vertUV0;
out vec3 vertColor;
out vec3 fragPos;
out vec3 fragPosDirLight;
out vec4 fragPosSpotLight[NUM_SPOT_LIGHTS];
out vec3 tangentCamPos;
out vec3 tangentFragPos;
out vec3 tangentDirLightDir;
out vec3 tangentSpotLightPositions[NUM_SPOT_LIGHTS];
out vec3 tangentSpotLightDirections[NUM_SPOT_LIGHTS];
out vec3 tangentPointLightPositions[NUM_POINT_LIGHTS];
void main()
{
vertUV0 = vertUV0In;
vertColor = vertColorIn;
vec4 modelVert = modelMat * vec4(vertPosIn, 1);
// Tangent-BiTangent-Normal matrix for normal mapping
vec3 T = normalize(vec3(modelMat * vec4(vertTangentIn, 0.0)));
vec3 N = normalize(vec3(modelMat * vec4(vertNormalIn, 0.0)));
// Ensure T is orthogonal with respect to N
T = normalize(T - dot(T, N) * N);
vec3 B = cross(N, T);
mat3 tbnMtx = transpose(mat3(T, B, N));
// Lighting related
fragPos = modelVert.xyz;
fragPosDirLight = vec3(dirLightProjViewMat * vec4(fragPos, 1));
tangentCamPos = tbnMtx * camPos;
tangentFragPos = tbnMtx * fragPos;
tangentDirLightDir = tbnMtx * dirLight.dir;
for (int i = 0; i < NUM_POINT_LIGHTS; i++)
tangentPointLightPositions[i] = tbnMtx * pointLights[i].pos;
for (int i = 0; i < NUM_SPOT_LIGHTS; i++)
{
fragPosSpotLight[i] = spotLightProjViewMats[i] * vec4(fragPos, 1);
tangentSpotLightPositions[i] = tbnMtx * spotLights[i].pos;
tangentSpotLightDirections[i] = tbnMtx * spotLights[i].dir;
}
gl_Position = projViewMat * modelVert;
}
//shader:fragment
#version 410
/*
Note that while all lighting calculations are done in tangent space,
shadow mapping is done in world space.
The exception is the bias calculation. Since the bias relies on the normal
and the normal is in tangent space, we use a tangent space fragment position
with it, but the rest of shadow processing is in world space.
*/
#define NUM_SPOT_LIGHTS 4
#define NUM_POINT_LIGHTS 8
//
// Inputs
//
in vec3 fragPos;
in vec2 vertUV0;
in vec3 vertColor;
in vec3 fragPosDirLight;
in vec4 fragPosSpotLight[NUM_SPOT_LIGHTS];
in vec3 tangentCamPos;
in vec3 tangentFragPos;
in vec3 tangentDirLightDir;
in vec3 tangentSpotLightPositions[NUM_SPOT_LIGHTS];
in vec3 tangentSpotLightDirections[NUM_SPOT_LIGHTS];
in vec3 tangentPointLightPositions[NUM_POINT_LIGHTS];
//
// Uniforms
//
struct Material {
sampler2D diffuse;
sampler2D specular;
sampler2D normal;
sampler2D emission;
float shininess;
};
uniform Material material;
struct DirLight {
vec3 dir;
vec3 diffuseColor;
vec3 specularColor;
sampler2D shadowMap;
};
uniform DirLight dirLight;
struct PointLight {
vec3 pos;
vec3 diffuseColor;
vec3 specularColor;
float constant;
float linear;
float quadratic;
float farPlane;
};
uniform PointLight pointLights[NUM_POINT_LIGHTS];
uniform samplerCubeArray pointLightCubeShadowMaps;
struct SpotLight {
vec3 pos;
vec3 dir;
vec3 diffuseColor;
vec3 specularColor;
float innerCutoff;
float outerCutoff;
};
uniform SpotLight spotLights[NUM_SPOT_LIGHTS];
uniform sampler2DArray spotLightShadowMaps;
uniform vec3 ambientColor = vec3(0.2, 0.2, 0.2);
in vec3 vertColor;
in vec3 vertNormal;
in vec2 vertUV0;
in vec3 fragPos;
in vec4 fragPosDirLight;
//
// Outputs
//
out vec4 fragColor;
//
// Global variables used as cache for lighting calculations
//
vec3 tangentViewDir;
vec4 diffuseTexColor;
vec4 specularTexColor;
vec4 emissionTexColor;
vec3 normalizedVertNorm;
vec3 viewDir;
float CalcShadow(sampler2D shadowMap, vec3 lightDir)
float CalcDirShadow(sampler2D shadowMap, vec3 tangentLightDir)
{
// Move from clip space to NDC
vec3 projCoords = fragPosDirLight.xyz / fragPosDirLight.w;
// Move from [-1,1] to [0, 1]
projCoords = projCoords * 0.5 + 0.5;
vec3 projCoords = fragPosDirLight * 0.5 + 0.5;
// If sampling outside the depth texture then force 'no shadow'
if(projCoords.z > 1)
@ -116,15 +211,15 @@ float CalcShadow(sampler2D shadowMap, vec3 lightDir)
// Bias in the range [0.005, 0.05] depending on the angle, where a higher
// angle gives a higher bias, as shadow acne gets worse with angle
float bias = max(0.05 * (1 - dot(normalizedVertNorm, lightDir)), 0.005);
float bias = max(0.05 * (1 - dot(normalizedVertNorm, tangentLightDir)), 0.005);
// 'Percentage Close Filtering'. B
// 'Percentage Close Filtering'.
// Basically get soft shadows by averaging this texel and surrounding ones
float shadow = 0;
vec2 texelSize = 1 / textureSize(shadowMap, 0);
for(int x = -1; x <= 1; ++x)
for(int x = -1; x <= 1; x++)
{
for(int y = -1; y <= 1; ++y)
for(int y = -1; y <= 1; y++)
{
float pcfDepth = texture(shadowMap, projCoords.xy + vec2(x, y) * texelSize).r;
@ -141,61 +236,125 @@ float CalcShadow(sampler2D shadowMap, vec3 lightDir)
vec3 CalcDirLight()
{
vec3 lightDir = normalize(-dirLight.dir);
vec3 lightDir = normalize(-tangentDirLightDir);
// Diffuse
float diffuseAmount = max(0.0, dot(normalizedVertNorm, lightDir));
vec3 finalDiffuse = diffuseAmount * dirLight.diffuseColor * diffuseTexColor.rgb;
// Specular
vec3 halfwayDir = normalize(lightDir + viewDir);
vec3 halfwayDir = normalize(lightDir + tangentViewDir);
float specularAmount = pow(max(dot(normalizedVertNorm, halfwayDir), 0.0), material.shininess);
vec3 finalSpecular = specularAmount * dirLight.specularColor * specularTexColor.rgb;
// Shadow
float shadow = CalcShadow(dirLight.shadowMap, lightDir);
float shadow = CalcDirShadow(dirLight.shadowMap, lightDir);
return (finalDiffuse + finalSpecular) * (1 - shadow);
}
vec3 CalcPointLight(PointLight pointLight)
float CalcPointShadow(int lightIndex, vec3 worldLightPos, vec3 tangentLightDir, float farPlane) {
vec3 lightToFrag = fragPos - worldLightPos;
float closestDepth = texture(pointLightCubeShadowMaps, vec4(lightToFrag, lightIndex)).r;
// We stored depth in the cubemap in the range [0, 1], so now we move back to [0, farPlane]
closestDepth *= farPlane;
// Get depth of current fragment
float currentDepth = length(lightToFrag);
float bias = max(0.05 * (1 - dot(normalizedVertNorm, tangentLightDir)), 0.005);
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
return shadow;
}
vec3 CalcPointLight(PointLight pointLight, int lightIndex)
{
// Ignore unset lights
if (pointLight.constant == 0){
return vec3(0);
}
vec3 lightDir = normalize(pointLight.pos - fragPos);
vec3 tangentLightPos = tangentPointLightPositions[lightIndex];
vec3 tangentLightDir = normalize(tangentLightPos - tangentFragPos);
// Diffuse
float diffuseAmount = max(0.0, dot(normalizedVertNorm, lightDir));
float diffuseAmount = max(0.0, dot(normalizedVertNorm, tangentLightDir));
vec3 finalDiffuse = diffuseAmount * pointLight.diffuseColor * diffuseTexColor.rgb;
// Specular
vec3 halfwayDir = normalize(lightDir + viewDir);
vec3 halfwayDir = normalize(tangentLightDir + tangentViewDir);
float specularAmount = pow(max(dot(normalizedVertNorm, halfwayDir), 0.0), material.shininess);
vec3 finalSpecular = specularAmount * pointLight.specularColor * specularTexColor.rgb;
// attenuation
float distToLight = length(pointLight.pos - fragPos);
// Attenuation
float distToLight = length(tangentLightPos - tangentFragPos);
float attenuation = 1 / (pointLight.constant + pointLight.linear * distToLight + pointLight.quadratic * (distToLight * distToLight));
return (finalDiffuse + finalSpecular) * attenuation;
// Shadow
float shadow = CalcPointShadow(lightIndex, pointLight.pos, tangentLightDir, pointLight.farPlane);
return (finalDiffuse + finalSpecular) * attenuation * (1 - shadow);
}
vec3 CalcSpotLight(SpotLight light)
float CalcSpotShadow(vec3 tangentLightDir, int lightIndex)
{
// Move from clip space to NDC
vec3 projCoords = fragPosSpotLight[lightIndex].xyz / fragPosSpotLight[lightIndex].w;
// Move from [-1,1] to [0, 1]
projCoords = projCoords * 0.5 + 0.5;
// If sampling outside the depth texture then force 'no shadow'
if(projCoords.z > 1)
return 0;
// currentDepth is the fragment depth from the light's perspective
float currentDepth = projCoords.z;
// Bias in the range [0.005, 0.05] depending on the angle, where a higher
// angle gives a higher bias, as shadow acne gets worse with angle
float bias = max(0.05 * (1 - dot(normalizedVertNorm, tangentLightDir)), 0.005);
// 'Percentage Close Filtering'.
// Basically get soft shadows by averaging this texel and surrounding ones
float shadow = 0;
vec2 texelSize = 1 / textureSize(spotLightShadowMaps, 0).xy;
for(int x = -1; x <= 1; x++)
{
for(int y = -1; y <= 1; y++)
{
float pcfDepth = texture(spotLightShadowMaps, vec3(projCoords.xy + vec2(x, y) * texelSize, lightIndex)).r;
// If our depth is larger than the lights closest depth at the texel we checked (projCoords),
// then there is something closer to the light than us, and so we are in shadow
shadow += currentDepth - bias > pcfDepth ? 1 : 0;
}
}
shadow /= 9;
return shadow;
}
vec3 CalcSpotLight(SpotLight light, int lightIndex)
{
if (light.innerCutoff == 0)
return vec3(0);
vec3 fragToLightDir = normalize(light.pos - fragPos);
vec3 tangentLightDir = tangentSpotLightDirections[lightIndex];
vec3 fragToLightDir = normalize(tangentSpotLightPositions[lightIndex] - tangentFragPos);
// Spot light cone with full intensity within inner cutoff,
// and falloff between inner-outer cutoffs, and zero
// light after outer cutoff
float theta = dot(fragToLightDir, normalize(-light.dir));
float theta = dot(fragToLightDir, normalize(-tangentLightDir));
float epsilon = (light.innerCutoff - light.outerCutoff);
float intensity = clamp((theta - light.outerCutoff) / epsilon, 0.0, 1);
float intensity = clamp((theta - light.outerCutoff) / epsilon, float(0), float(1));
if (intensity == 0)
return vec3(0);
@ -205,38 +364,52 @@ vec3 CalcSpotLight(SpotLight light)
vec3 finalDiffuse = diffuseAmount * light.diffuseColor * diffuseTexColor.rgb;
// Specular
vec3 halfwayDir = normalize(fragToLightDir + viewDir);
vec3 halfwayDir = normalize(fragToLightDir + tangentViewDir);
float specularAmount = pow(max(dot(normalizedVertNorm, halfwayDir), 0.0), material.shininess);
vec3 finalSpecular = specularAmount * light.specularColor * specularTexColor.rgb;
return (finalDiffuse + finalSpecular) * intensity;
// Shadow
float shadow = CalcSpotShadow(fragToLightDir, lightIndex);
return (finalDiffuse + finalSpecular) * intensity * (1 - shadow);
}
#define DRAW_NORMALS false
void main()
{
// Shared values
tangentViewDir = normalize(tangentCamPos - tangentFragPos);
diffuseTexColor = texture(material.diffuse, vertUV0);
specularTexColor = texture(material.specular, vertUV0);
emissionTexColor = texture(material.emission, vertUV0);
normalizedVertNorm = normalize(vertNormal);
viewDir = normalize(camPos - fragPos);
// Read normal data encoded [0,1]
normalizedVertNorm = texture(material.normal, vertUV0).rgb;
// Remap normal to [-1,1]
normalizedVertNorm = normalize(normalizedVertNorm * 2.0 - 1.0);
// Light contributions
vec3 finalColor = CalcDirLight();
for (int i = 0; i < NUM_POINT_LIGHTS; i++)
{
finalColor += CalcPointLight(pointLights[i]);
finalColor += CalcPointLight(pointLights[i], i);
}
for (int i = 0; i < NUM_SPOT_LIGHTS; i++)
{
finalColor += CalcSpotLight(spotLights[i]);
finalColor += CalcSpotLight(spotLights[i], i);
}
vec3 finalEmission = emissionTexColor.rgb;
vec3 finalAmbient = ambientColor * diffuseTexColor.rgb;
fragColor = vec4(finalColor + finalAmbient + finalEmission, 1);
if (DRAW_NORMALS)
{
fragColor = vec4(texture(material.normal, vertUV0).rgb, 1);
}
}

View File

@ -3,8 +3,9 @@
layout(location=0) in vec3 vertPosIn;
layout(location=1) in vec3 vertNormalIn;
layout(location=2) in vec2 vertUV0In;
layout(location=3) in vec3 vertColorIn;
layout(location=2) in vec3 vertTangentIn;
layout(location=3) in vec2 vertUV0In;
layout(location=4) in vec3 vertColorIn;
out vec3 vertUV0;

View File

@ -0,0 +1,50 @@
//shader:vertex
#version 410
out vec2 vertUV0;
// Hardcoded vertex positions for a fullscreen quad.
// Format: vec4(pos.x, pos.y, uv0.x, uv0.y)
vec4 quadData[6] = vec4[](
vec4(-1.0, 1.0, 0.0, 1.0),
vec4(-1.0, -1.0, 0.0, 0.0),
vec4(1.0, -1.0, 1.0, 0.0),
vec4(-1.0, 1.0, 0.0, 1.0),
vec4(1.0, -1.0, 1.0, 0.0),
vec4(1.0, 1.0, 1.0, 1.0)
);
void main()
{
vec4 vertData = quadData[gl_VertexID];
vertUV0 = vertData.zw;
gl_Position = vec4(vertData.xy, 0.0, 1.0);
}
//shader:fragment
#version 410
struct Material {
sampler2D diffuse;
};
uniform float exposure = 1;
uniform Material material;
in vec2 vertUV0;
out vec4 fragColor;
void main()
{
vec4 diffuseTexColor = texture(material.diffuse, vertUV0);
// Reinhard tone mapping
// vec3 mappedColor = diffuseTexColor.rgb / (diffuseTexColor.rgb + vec3(1.0));
// Exposure tone mapping
vec3 mappedColor = vec3(1.0) - exp(-diffuseTexColor.rgb * exposure);
fragColor = vec4(mappedColor, 1);
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 142 B

BIN
res/textures/brickwall-normal.png Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 MiB

BIN
res/textures/brickwall.png Executable file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 232 B

View File

@ -6,32 +6,48 @@ import (
)
type ShaderProgram struct {
ID uint32
VertShaderID uint32
FragShaderID uint32
Id uint32
VertShaderId uint32
FragShaderId uint32
GeomShaderId uint32
}
func (sp *ShaderProgram) AttachShader(shader Shader) {
gl.AttachShader(sp.ID, shader.ID)
switch shader.ShaderType {
case VertexShaderType:
sp.VertShaderID = shader.ID
case FragmentShaderType:
sp.FragShaderID = shader.ID
gl.AttachShader(sp.Id, shader.Id)
switch shader.Type {
case ShaderType_Vertex:
sp.VertShaderId = shader.Id
case ShaderType_Fragment:
sp.FragShaderId = shader.Id
case ShaderType_Geometry:
sp.GeomShaderId = shader.Id
default:
logging.ErrLog.Println("Unknown shader type ", shader.ShaderType, " for ID ", shader.ID)
logging.ErrLog.Fatalf("Unknown shader type '%d' for shader id '%d'\n", shader.Type, shader.Id)
}
}
func (sp *ShaderProgram) Link() {
gl.LinkProgram(sp.ID)
gl.LinkProgram(sp.Id)
if sp.VertShaderID != 0 {
gl.DeleteShader(sp.VertShaderID)
if sp.VertShaderId != 0 {
gl.DeleteShader(sp.VertShaderId)
}
if sp.FragShaderID != 0 {
gl.DeleteShader(sp.FragShaderID)
if sp.FragShaderId != 0 {
gl.DeleteShader(sp.FragShaderId)
}
if sp.GeomShaderId != 0 {
gl.DeleteShader(sp.GeomShaderId)
}
}
func (s *ShaderProgram) Bind() {
gl.UseProgram(s.Id)
}
func (s *ShaderProgram) UnBind() {
gl.UseProgram(0)
}

View File

@ -1,10 +1,31 @@
package shaders
import "github.com/go-gl/gl/v4.1-core/gl"
import (
"github.com/bloeys/nmage/logging"
"github.com/go-gl/gl/v4.1-core/gl"
)
type ShaderType int
type ShaderType int32
func (s ShaderType) ToGl() uint32 {
switch s {
case ShaderType_Vertex:
return gl.VERTEX_SHADER
case ShaderType_Fragment:
return gl.FRAGMENT_SHADER
case ShaderType_Geometry:
return gl.GEOMETRY_SHADER
default:
logging.ErrLog.Fatalf("Unknown shader type '%d'\n", s)
return 0
}
}
const (
VertexShaderType ShaderType = gl.VERTEX_SHADER
FragmentShaderType ShaderType = gl.FRAGMENT_SHADER
ShaderType_Unknown ShaderType = iota
ShaderType_Vertex
ShaderType_Fragment
ShaderType_Geometry
)

View File

@ -3,6 +3,7 @@ package shaders
import (
"bytes"
"errors"
"fmt"
"os"
"strings"
@ -11,12 +12,13 @@ import (
)
type Shader struct {
ID uint32
ShaderType ShaderType
Id uint32
Type ShaderType
}
func (s Shader) Delete() {
gl.DeleteShader(s.ID)
func (s *Shader) Delete() {
gl.DeleteShader(s.Id)
s.Id = 0
}
func NewShaderProgram() (ShaderProgram, error) {
@ -26,7 +28,7 @@ func NewShaderProgram() (ShaderProgram, error) {
return ShaderProgram{}, errors.New("failed to create shader program")
}
return ShaderProgram{ID: id}, nil
return ShaderProgram{Id: id}, nil
}
func LoadAndCompileCombinedShader(shaderPath string) (ShaderProgram, error) {
@ -43,8 +45,8 @@ func LoadAndCompileCombinedShader(shaderPath string) (ShaderProgram, error) {
func LoadAndCompileCombinedShaderSrc(shaderSrc []byte) (ShaderProgram, error) {
shaderSources := bytes.Split(shaderSrc, []byte("//shader:"))
if len(shaderSources) == 1 {
return ShaderProgram{}, errors.New("failed to read combined shader. Did not find '//shader:vertex' or '//shader:fragment'")
if len(shaderSources) < 2 {
return ShaderProgram{}, errors.New("failed to read combined shader. The minimum shader types to have are '//shader:vertex' and '//shader:fragment'")
}
shdrProg, err := NewShaderProgram()
@ -65,12 +67,15 @@ func LoadAndCompileCombinedShaderSrc(shaderSrc []byte) (ShaderProgram, error) {
var shdrType ShaderType
if bytes.HasPrefix(src, []byte("vertex")) {
src = src[6:]
shdrType = VertexShaderType
shdrType = ShaderType_Vertex
} else if bytes.HasPrefix(src, []byte("fragment")) {
src = src[8:]
shdrType = FragmentShaderType
shdrType = ShaderType_Fragment
} else if bytes.HasPrefix(src, []byte("geometry")) {
src = src[8:]
shdrType = ShaderType_Geometry
} else {
return ShaderProgram{}, errors.New("unknown shader type. Must be '//shader:vertex' or '//shader:fragment'")
return ShaderProgram{}, errors.New("unknown shader type. Must be '//shader:vertex' or '//shader:fragment' or '//shader:geometry'")
}
shdr, err := CompileShaderOfType(src, shdrType)
@ -83,7 +88,15 @@ func LoadAndCompileCombinedShaderSrc(shaderSrc []byte) (ShaderProgram, error) {
}
if loadedShdrCount == 0 {
return ShaderProgram{}, errors.New("no valid shaders found. Please put '//shader:vertex' or '//shader:fragment' before your shaders")
return ShaderProgram{}, errors.New("no valid shaders found. Please put '//shader:vertex' or '//shader:fragment' or '//shader:geometry' before your shaders")
}
if shdrProg.VertShaderId == 0 {
return ShaderProgram{}, errors.New("no valid vertex shader found. Please put '//shader:vertex' before your vertex shader")
}
if shdrProg.FragShaderId == 0 {
return ShaderProgram{}, errors.New("no valid fragment shader found. Please put '//shader:fragment' before your vertex shader")
}
shdrProg.Link()
@ -92,41 +105,40 @@ func LoadAndCompileCombinedShaderSrc(shaderSrc []byte) (ShaderProgram, error) {
func CompileShaderOfType(shaderSource []byte, shaderType ShaderType) (Shader, error) {
shaderID := gl.CreateShader(uint32(shaderType))
if shaderID == 0 {
logging.ErrLog.Println("Failed to create shader.")
return Shader{}, errors.New("failed to create shader")
shaderId := gl.CreateShader(shaderType.ToGl())
if shaderId == 0 {
return Shader{}, fmt.Errorf("failed to create OpenGl shader. OpenGl Error=%d", gl.GetError())
}
//Load shader source and compile
shaderCStr, shaderFree := gl.Strs(string(shaderSource) + "\x00")
defer shaderFree()
gl.ShaderSource(shaderID, 1, shaderCStr, nil)
gl.ShaderSource(shaderId, 1, shaderCStr, nil)
gl.CompileShader(shaderID)
if err := getShaderCompileErrors(shaderID); err != nil {
gl.DeleteShader(shaderID)
gl.CompileShader(shaderId)
if err := getShaderCompileErrors(shaderId); err != nil {
gl.DeleteShader(shaderId)
return Shader{}, err
}
return Shader{ID: shaderID, ShaderType: shaderType}, nil
return Shader{Id: shaderId, Type: shaderType}, nil
}
func getShaderCompileErrors(shaderID uint32) error {
func getShaderCompileErrors(shaderId uint32) error {
var compiledSuccessfully int32
gl.GetShaderiv(shaderID, gl.COMPILE_STATUS, &compiledSuccessfully)
gl.GetShaderiv(shaderId, gl.COMPILE_STATUS, &compiledSuccessfully)
if compiledSuccessfully == gl.TRUE {
return nil
}
var logLength int32
gl.GetShaderiv(shaderID, gl.INFO_LOG_LENGTH, &logLength)
gl.GetShaderiv(shaderId, gl.INFO_LOG_LENGTH, &logLength)
log := gl.Str(strings.Repeat("\x00", int(logLength)))
gl.GetShaderInfoLog(shaderID, logLength, nil, log)
gl.GetShaderInfoLog(shaderId, logLength, nil, log)
errMsg := gl.GoStr(log)
logging.ErrLog.Println("Compilation of shader with id ", shaderID, " failed. Err: ", errMsg)
logging.ErrLog.Println("Compilation of shader with id ", shaderId, " failed. Err: ", errMsg)
return errors.New(errMsg)
}

View File

@ -12,7 +12,7 @@ import (
type ImguiInfo struct {
ImCtx imgui.Context
Mat *materials.Material
Mat materials.Material
VaoID uint32
VboID uint32
IndexBufID uint32
@ -204,7 +204,7 @@ void main()
// If the path is empty a default nMage shader is used
func NewImGui(shaderPath string) ImguiInfo {
var imguiMat *materials.Material
var imguiMat materials.Material
if shaderPath == "" {
imguiMat = materials.NewMaterialSrc("ImGUI Mat", []byte(DefaultImguiShader))
} else {