Compare commits

...

1 Commits

Author SHA1 Message Date
f35c217d73 Spotlight shadows 2024-04-16 10:34:30 +04:00
6 changed files with 380 additions and 99 deletions

View File

@ -11,6 +11,7 @@ type FramebufferAttachmentType int32
const (
FramebufferAttachmentType_Unknown FramebufferAttachmentType = iota
FramebufferAttachmentType_Texture
FramebufferAttachmentType_Texture_Array
FramebufferAttachmentType_Renderbuffer
FramebufferAttachmentType_Cubemap
FramebufferAttachmentType_Cubemap_Array
@ -21,6 +22,8 @@ func (f FramebufferAttachmentType) IsValid() bool {
switch f {
case FramebufferAttachmentType_Texture:
fallthrough
case FramebufferAttachmentType_Texture_Array:
fallthrough
case FramebufferAttachmentType_Renderbuffer:
fallthrough
case FramebufferAttachmentType_Cubemap:
@ -180,6 +183,10 @@ func (fbo *Framebuffer) NewColorAttachment(
logging.ErrLog.Fatalf("failed creating color attachment because cubemaps can not be color attachments (at least in this implementation. You might be able to do it manually)\n")
}
if attachType == FramebufferAttachmentType_Texture_Array {
logging.ErrLog.Fatalf("failed creating color attachment because texture arrays can not be color attachments (implementation can be updated to support it or you can do it manually)\n")
}
if !attachFormat.IsColorFormat() {
logging.ErrLog.Fatalf("failed creating color attachment for framebuffer due to attachment data format not being a valid color type. Data format=%d\n", attachFormat)
}
@ -271,6 +278,10 @@ func (fbo *Framebuffer) NewDepthAttachment(
logging.ErrLog.Fatalf("failed creating cubemap array depth attachment because 'NewDepthCubemapArrayAttachment' must be used for that\n")
}
if attachType == FramebufferAttachmentType_Texture_Array {
logging.ErrLog.Fatalf("failed creating texture array depth attachment because 'NewDepthTextureArrayAttachment' must be used for that\n")
}
a := FramebufferAttachment{
Type: attachType,
Format: attachFormat,
@ -407,6 +418,68 @@ func (fbo *Framebuffer) NewDepthCubemapArrayAttachment(
fbo.Attachments = append(fbo.Attachments, a)
}
func (fbo *Framebuffer) NewDepthTextureArrayAttachment(
attachFormat FramebufferAttachmentDataFormat,
numTextures int32,
) {
if fbo.HasDepthAttachment() {
logging.ErrLog.Fatalf("failed creating texture array depth attachment for framebuffer because a depth attachment already exists\n")
}
if !attachFormat.IsDepthFormat() {
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer due to attachment data format not being a valid depth-stencil type. Data format=%d\n", attachFormat)
}
a := FramebufferAttachment{
Type: FramebufferAttachmentType_Texture_Array,
Format: attachFormat,
}
fbo.Bind()
// Create cubemap array
gl.GenTextures(1, &a.Id)
if a.Id == 0 {
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
}
gl.BindTexture(gl.TEXTURE_2D_ARRAY, a.Id)
gl.TexImage3D(
gl.TEXTURE_2D_ARRAY,
0,
attachFormat.GlInternalFormat(),
int32(fbo.Width),
int32(fbo.Height),
numTextures,
0,
attachFormat.GlFormat(),
gl.FLOAT,
nil,
)
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
// This is so that any sampling outside the depth map gives a full depth value.
// Useful for example when doing shadow maps where we want things outside
// the range of the texture to not show shadow
borderColor := []float32{1, 1, 1, 1}
gl.TexParameterfv(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_BORDER_COLOR, &borderColor[0])
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_BORDER)
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_BORDER)
gl.BindTexture(gl.TEXTURE_2D_ARRAY, 0)
// Attach to fbo
gl.FramebufferTexture(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, a.Id, 0)
fbo.UnBind()
fbo.ClearFlags |= gl.DEPTH_BUFFER_BIT
fbo.Attachments = append(fbo.Attachments, a)
}
func (fbo *Framebuffer) NewDepthStencilAttachment(
attachType FramebufferAttachmentType,
attachFormat FramebufferAttachmentDataFormat,

257
main.go
View File

@ -32,7 +32,8 @@ import (
- Spotlights ✅
- Directional light shadows ✅
- Point light shadows ✅
- Spotlight shadows
- Spotlight shadows
- UBO support
- HDR
- Cascaded shadow mapping
- Skeletal animations
@ -70,7 +71,7 @@ func (d *DirLight) GetProjViewMat() gglm.Mat4 {
farClip := dirLightFar
projMat := gglm.Ortho(-size, size, -size, size, nearClip, farClip).Mat4
viewMat := gglm.LookAtRH(pos, pos.Clone().Add(d.Dir.Clone().Scale(10)), gglm.NewVec3(0, 1, 0)).Mat4
viewMat := gglm.LookAtRH(pos, pos.Clone().Add(&d.Dir), gglm.NewVec3(0, 1, 0)).Mat4
return *projMat.Mul(&viewMat)
}
@ -93,6 +94,9 @@ type PointLight struct {
const (
MaxPointLights = 8
// If this changes update the array depth map shader
MaxSpotLights = 4
)
var (
@ -117,24 +121,42 @@ func (p *PointLight) GetProjViewMats(shadowMapWidth, shadowMapHeight float32) [6
}
type SpotLight struct {
Pos gglm.Vec3
Dir gglm.Vec3
DiffuseColor gglm.Vec3
SpecularColor gglm.Vec3
InnerCutoff float32
OuterCutoff float32
Pos gglm.Vec3
Dir gglm.Vec3
DiffuseColor gglm.Vec3
SpecularColor gglm.Vec3
InnerCutoffRad float32
OuterCutoffRad float32
// Near plane like 0.x (or anything too small) causes shadows to not work properly.
// Needs adjusting as the distance of light to object increases
NearPlane float32
FarPlane float32
}
// SetCutoffs properly sets the cosine values of the cutoffs using the passed
// degrees.
//
// The light has full intensity within the inner cutoff, falloff between
// inner-outer cutoff, and zero light beyond the outer cutoff.
//
// The inner cuttoff degree must be *smaller* than the outer cutoff
func (s *SpotLight) SetCutoffs(innerCutoffAngleDeg, outerCutoffAngleDeg float32) {
s.InnerCutoff = gglm.Cos32(innerCutoffAngleDeg * gglm.Deg2Rad)
s.OuterCutoff = gglm.Cos32(outerCutoffAngleDeg * gglm.Deg2Rad)
func (s *SpotLight) GetProjViewMat() gglm.Mat4 {
projMat := gglm.Perspective(s.OuterCutoffRad*2, 1, s.NearPlane, s.FarPlane)
// Adjust up vector if lightDir is parallel or nearly parallel to upVector
// as lookat view matrix breaks if up and look at are parallel
up := gglm.NewVec3(0, 1, 0)
if gglm.Abs32(gglm.DotVec3(&s.Dir, up)) > 0.99 {
up.SetXY(1, 0)
}
viewMat := gglm.LookAtRH(&s.Pos, s.Pos.Clone().Add(&s.Dir), up).Mat4
return *projMat.Mul(&viewMat)
}
func (s *SpotLight) InnerCutoffCos() float32 {
return gglm.Cos32(s.InnerCutoffRad)
}
func (s *SpotLight) OuterCutoffCos() float32 {
return gglm.Cos32(s.OuterCutoffRad)
}
const (
@ -153,32 +175,36 @@ var (
cam *camera.Camera
// Demo fbo
renderToDemoFbo = true
renderToDemoFbo = false
renderToBackBuffer = true
demoFboScale = gglm.NewVec2(0.25, 0.25)
demoFboOffset = gglm.NewVec2(0.75, -0.75)
demoFbo buffers.Framebuffer
// Dir light fbo
showDirLightDepthMapFbo = true
showDirLightDepthMapFbo = false
dirLightDepthMapFboScale = gglm.NewVec2(0.25, 0.25)
dirLightDepthMapFboOffset = gglm.NewVec2(0.75, -0.2)
dirLightDepthMapFbo buffers.Framebuffer
// Point light fbo
omnidirDepthMapFbo buffers.Framebuffer
pointLightDepthMapFbo buffers.Framebuffer
// Spot light fbo
spotLightDepthMapFbo buffers.Framebuffer
screenQuadVao buffers.VertexArray
screenQuadMat *materials.Material
unlitMat *materials.Material
whiteMat *materials.Material
containerMat *materials.Material
palleteMat *materials.Material
skyboxMat *materials.Material
dirLightDepthMapMat *materials.Material
omnidirDepthMapMat *materials.Material
debugDepthMat *materials.Material
unlitMat *materials.Material
whiteMat *materials.Material
containerMat *materials.Material
palleteMat *materials.Material
skyboxMat *materials.Material
depthMapMat *materials.Material
arrayDepthMapMat *materials.Material
omnidirDepthMapMat *materials.Material
debugDepthMat *materials.Material
cubeMesh *meshes.Mesh
sphereMesh *meshes.Mesh
@ -245,13 +271,16 @@ var (
}
spotLights = [...]SpotLight{
{
Pos: *gglm.NewVec3(2, 5, 5),
Dir: *gglm.NewVec3(0, -1, 0),
DiffuseColor: *gglm.NewVec3(0, 1, 1),
Pos: *gglm.NewVec3(-4, 7, 5),
Dir: *gglm.NewVec3(1.5, -0.9, 0).Normalize(),
DiffuseColor: *gglm.NewVec3(1, 0, 1),
SpecularColor: *gglm.NewVec3(1, 1, 1),
// These must be cosine values
InnerCutoff: gglm.Cos32(15 * gglm.Deg2Rad),
OuterCutoff: gglm.Cos32(20 * gglm.Deg2Rad),
InnerCutoffRad: 15 * gglm.Deg2Rad,
OuterCutoffRad: 20 * gglm.Deg2Rad,
NearPlane: 1,
FarPlane: 30,
},
}
)
@ -442,8 +471,9 @@ func (g *Game) Init() {
whiteMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
whiteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
whiteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
whiteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
whiteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
whiteMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
whiteMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
containerMat = materials.NewMaterial("Container mat", "./res/shaders/simple.glsl")
containerMat.Shininess = 64
@ -460,8 +490,9 @@ func (g *Game) Init() {
containerMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
containerMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
containerMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
containerMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
containerMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
containerMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
containerMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
palleteMat = materials.NewMaterial("Pallete mat", "./res/shaders/simple.glsl")
palleteMat.Shininess = 64
@ -477,12 +508,15 @@ func (g *Game) Init() {
palleteMat.SetUnifFloat32("material.shininess", palleteMat.Shininess)
palleteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
palleteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
palleteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
palleteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
palleteMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
palleteMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
debugDepthMat = materials.NewMaterial("Debug depth mat", "./res/shaders/debug-depth.glsl")
dirLightDepthMapMat = materials.NewMaterial("Directional Depth Map mat", "./res/shaders/directional-depth-map.glsl")
depthMapMat = materials.NewMaterial("Depth Map mat", "./res/shaders/depth-map.glsl")
arrayDepthMapMat = materials.NewMaterial("Array Depth Map mat", "./res/shaders/array-depth-map.glsl")
omnidirDepthMapMat = materials.NewMaterial("Omnidirectional Depth Map mat", "./res/shaders/omnidirectional-depth-map.glsl")
@ -540,15 +574,25 @@ func (g *Game) initFbos() {
assert.T(dirLightDepthMapFbo.IsComplete(), "Depth map fbo is not complete after init")
// Cubemap fbo
omnidirDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
omnidirDepthMapFbo.SetNoColorBuffer()
omnidirDepthMapFbo.NewDepthCubemapArrayAttachment(
// Point light depth map fbo
pointLightDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
pointLightDepthMapFbo.SetNoColorBuffer()
pointLightDepthMapFbo.NewDepthCubemapArrayAttachment(
buffers.FramebufferAttachmentDataFormat_DepthF32,
MaxPointLights,
)
assert.T(omnidirDepthMapFbo.IsComplete(), "Cubemap fbo is not complete after init")
assert.T(pointLightDepthMapFbo.IsComplete(), "Point light depth map fbo is not complete after init")
// Spot light depth map fbo
spotLightDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
spotLightDepthMapFbo.SetNoColorBuffer()
spotLightDepthMapFbo.NewDepthTextureArrayAttachment(
buffers.FramebufferAttachmentDataFormat_DepthF32,
MaxSpotLights,
)
assert.T(spotLightDepthMapFbo.IsComplete(), "Spot light depth map fbo is not complete after init")
}
func (g *Game) updateLights() {
@ -593,14 +637,17 @@ func (g *Game) updateLights() {
palleteMat.SetUnifFloat32(indexString+".farPlane", p.FarPlane)
}
whiteMat.CubemapArrayTex = omnidirDepthMapFbo.Attachments[0].Id
containerMat.CubemapArrayTex = omnidirDepthMapFbo.Attachments[0].Id
palleteMat.CubemapArrayTex = omnidirDepthMapFbo.Attachments[0].Id
whiteMat.CubemapArrayTex = pointLightDepthMapFbo.Attachments[0].Id
containerMat.CubemapArrayTex = pointLightDepthMapFbo.Attachments[0].Id
palleteMat.CubemapArrayTex = pointLightDepthMapFbo.Attachments[0].Id
// Spotlights
for i := 0; i < len(spotLights); i++ {
l := &spotLights[i]
innerCutoffCos := l.InnerCutoffCos()
outerCutoffCos := l.OuterCutoffCos()
indexString := "spotLights[" + strconv.Itoa(i) + "]"
whiteMat.SetUnifVec3(indexString+".pos", &l.Pos)
@ -619,14 +666,18 @@ func (g *Game) updateLights() {
containerMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
palleteMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
whiteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
containerMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
palleteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
whiteMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
containerMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
palleteMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
whiteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
containerMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
palleteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
whiteMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
containerMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
palleteMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
}
whiteMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
containerMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
palleteMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
}
func (g *Game) Update() {
@ -638,11 +689,6 @@ func (g *Game) Update() {
g.updateCameraLookAround()
g.updateCameraPos()
//Rotating cubes
if input.KeyDown(sdl.K_SPACE) {
cubeModelMat.Rotate(10*timing.DT()*gglm.Deg2Rad, gglm.NewVec3(1, 1, 1).Normalize())
}
g.showDebugWindow()
if input.KeyClicked(sdl.K_F4) {
@ -763,6 +809,8 @@ func (g *Game) showDebugWindow() {
}
// Spot lights
imgui.Checkbox("Render Spot Light Shadows", &renderSpotLightShadows)
if imgui.BeginListBoxV("Spot Lights", imgui.Vec2{Y: 200}) {
for i := 0; i < len(spotLights); i++ {
@ -800,18 +848,27 @@ func (g *Game) showDebugWindow() {
palleteMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
}
if imgui.DragFloat("Inner Cutoff", &l.InnerCutoff) {
whiteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
containerMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
palleteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
if imgui.DragFloat("Inner Cutoff Radians", &l.InnerCutoffRad) {
cos := l.InnerCutoffCos()
whiteMat.SetUnifFloat32(indexString+".innerCutoff", cos)
containerMat.SetUnifFloat32(indexString+".innerCutoff", cos)
palleteMat.SetUnifFloat32(indexString+".innerCutoff", cos)
}
if imgui.DragFloat("Outer Cutoff", &l.OuterCutoff) {
whiteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
containerMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
palleteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
if imgui.DragFloat("Outer Cutoff Radians", &l.OuterCutoffRad) {
cos := l.OuterCutoffCos()
whiteMat.SetUnifFloat32(indexString+".outerCutoff", cos)
containerMat.SetUnifFloat32(indexString+".outerCutoff", cos)
palleteMat.SetUnifFloat32(indexString+".outerCutoff", cos)
}
imgui.DragFloat("Spot Near Plane", &l.NearPlane)
imgui.DragFloat("Spot Far Plane", &l.FarPlane)
imgui.TreePop()
}
@ -902,24 +959,36 @@ func (g *Game) updateCameraPos() {
var (
renderDirLightShadows = true
renderPointLightShadows = true
renderSpotLightShadows = true
rotatingCubeSpeedDeg1 float32 = 45
rotatingCubeSpeedDeg2 float32 = 120
rotatingCubeSpeedDeg3 float32 = 120
rotatingCubeTrMat1 = *gglm.NewTrMatId().Translate(gglm.NewVec3(-4, -1, 4))
rotatingCubeTrMat2 = *gglm.NewTrMatId().Translate(gglm.NewVec3(-1, 0.5, 4))
rotatingCubeTrMat3 = *gglm.NewTrMatId().Translate(gglm.NewVec3(5, 0.5, 4))
)
func (g *Game) Render() {
whiteMat.SetUnifVec3("camPos", &cam.Pos)
containerMat.SetUnifVec3("camPos", &cam.Pos)
palleteMat.SetUnifVec3("camPos", &cam.Pos)
rotatingCubeTrMat1.Rotate(rotatingCubeSpeedDeg1*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(0, 1, 0))
rotatingCubeTrMat2.Rotate(rotatingCubeSpeedDeg2*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(1, 1, 0))
rotatingCubeTrMat3.Rotate(rotatingCubeSpeedDeg3*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(1, 1, 1))
if renderDirLightShadows {
g.renderDirectionalShadowmap()
g.renderDirectionalLightShadowmap()
}
if renderSpotLightShadows {
g.renderSpotLightShadowmaps()
}
if renderPointLightShadows {
g.renderOmnidirectionalShadowmap()
g.renderPointLightShadowmaps()
}
if renderToBackBuffer {
@ -940,21 +1009,16 @@ func (g *Game) Render() {
}
}
func (g *Game) renderDirectionalShadowmap() {
func (g *Game) renderDirectionalLightShadowmap() {
// Set some uniforms
dirLightProjViewMat := dirLight.GetProjViewMat()
whiteMat.SetUnifVec3("camPos", &cam.Pos)
whiteMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
containerMat.SetUnifVec3("camPos", &cam.Pos)
containerMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
palleteMat.SetUnifVec3("camPos", &cam.Pos)
palleteMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
dirLightDepthMapMat.SetUnifMat4("projViewMat", &dirLightProjViewMat)
depthMapMat.SetUnifMat4("projViewMat", &dirLightProjViewMat)
// Start rendering
dirLightDepthMapFbo.BindWithViewport()
@ -966,7 +1030,7 @@ func (g *Game) renderDirectionalShadowmap() {
//
// Some note that this is too troublesome and fails in many cases. Might be better to remove.
gl.CullFace(gl.FRONT)
g.RenderScene(dirLightDepthMapMat)
g.RenderScene(depthMapMat)
gl.CullFace(gl.BACK)
dirLightDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
@ -980,10 +1044,41 @@ func (g *Game) renderDirectionalShadowmap() {
}
}
func (g *Game) renderOmnidirectionalShadowmap() {
func (g *Game) renderSpotLightShadowmaps() {
omnidirDepthMapFbo.BindWithViewport()
omnidirDepthMapFbo.Clear()
for i := 0; i < len(spotLights); i++ {
l := &spotLights[i]
indexStr := strconv.Itoa(i)
projViewMatIndexStr := "spotLightProjViewMats[" + indexStr + "]"
// Set render uniforms
projViewMat := l.GetProjViewMat()
whiteMat.SetUnifMat4(projViewMatIndexStr, &projViewMat)
containerMat.SetUnifMat4(projViewMatIndexStr, &projViewMat)
palleteMat.SetUnifMat4(projViewMatIndexStr, &projViewMat)
// Set depth uniforms
arrayDepthMapMat.SetUnifMat4("projViewMats["+indexStr+"]", &projViewMat)
}
// Render
spotLightDepthMapFbo.BindWithViewport()
spotLightDepthMapFbo.Clear()
// Front culling created issues
// gl.CullFace(gl.FRONT)
g.RenderScene(arrayDepthMapMat)
// gl.CullFace(gl.BACK)
spotLightDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
}
func (g *Game) renderPointLightShadowmaps() {
pointLightDepthMapFbo.BindWithViewport()
pointLightDepthMapFbo.Clear()
for i := 0; i < len(pointLights); i++ {
@ -995,7 +1090,7 @@ func (g *Game) renderOmnidirectionalShadowmap() {
omnidirDepthMapMat.SetUnifFloat32("farPlane", p.FarPlane)
// Set projView matrices
projViewMats := p.GetProjViewMats(float32(omnidirDepthMapFbo.Width), float32(omnidirDepthMapFbo.Height))
projViewMats := p.GetProjViewMats(float32(pointLightDepthMapFbo.Width), float32(pointLightDepthMapFbo.Height))
for j := 0; j < len(projViewMats); j++ {
omnidirDepthMapMat.SetUnifMat4("cubemapProjViewMats["+strconv.Itoa(j)+"]", &projViewMats[j])
}
@ -1003,7 +1098,7 @@ func (g *Game) renderOmnidirectionalShadowmap() {
g.RenderScene(omnidirDepthMapMat)
}
omnidirDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
pointLightDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
}
func (g *Game) renderDemoFob() {
@ -1070,8 +1165,8 @@ func (g *Game) RenderScene(overrideMat *materials.Material) {
// Rotating cubes
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat1, cubeMat)
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat2, cubeMat)
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat3, cubeMat)
// Cubes generator
// rowSize := 1

View File

@ -11,13 +11,14 @@ import (
type TextureSlot uint32
const (
TextureSlot_Diffuse TextureSlot = 0
TextureSlot_Specular TextureSlot = 1
TextureSlot_Normal TextureSlot = 2
TextureSlot_Emission TextureSlot = 3
TextureSlot_Cubemap TextureSlot = 10
TextureSlot_ShadowMap TextureSlot = 11
TextureSlot_Cubemap_Array TextureSlot = 12
TextureSlot_Diffuse TextureSlot = 0
TextureSlot_Specular TextureSlot = 1
TextureSlot_Normal TextureSlot = 2
TextureSlot_Emission TextureSlot = 3
TextureSlot_Cubemap TextureSlot = 10
TextureSlot_Cubemap_Array TextureSlot = 11
TextureSlot_ShadowMap1 TextureSlot = 12
TextureSlot_ShadowMap_Array1 TextureSlot = 13
)
type Material struct {
@ -42,7 +43,8 @@ type Material struct {
CubemapArrayTex uint32
// Shadowmaps
ShadowMapTex1 uint32
ShadowMapTex1 uint32
ShadowMapTexArray1 uint32
}
func (m *Material) Bind() {
@ -80,9 +82,14 @@ func (m *Material) Bind() {
}
if m.ShadowMapTex1 != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap))
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap1))
gl.BindTexture(gl.TEXTURE_2D, m.ShadowMapTex1)
}
if m.ShadowMapTexArray1 != 0 {
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap_Array1))
gl.BindTexture(gl.TEXTURE_2D_ARRAY, m.ShadowMapTexArray1)
}
}
func (m *Material) UnBind() {

View File

@ -0,0 +1,54 @@
//shader:vertex
#version 410
layout(location=0) in vec3 vertPosIn;
uniform mat4 modelMat;
void main()
{
gl_Position = modelMat * vec4(vertPosIn, 1);
}
//shader:geometry
#version 410
layout (triangles) in;
#define NUM_PROJ_VIEW_MATS 4
// 3 * NUM_PROJ_VIEW_MATS
layout (triangle_strip, max_vertices=12) out;
// This is the same number as max spot lights or whatever else is being rendered
uniform mat4 projViewMats[NUM_PROJ_VIEW_MATS];
out vec4 FragPos;
void main()
{
for(int projViewMatIndex = 0; projViewMatIndex < NUM_PROJ_VIEW_MATS; projViewMatIndex++){
gl_Layer = projViewMatIndex;
mat4 projViewMat = projViewMats[projViewMatIndex];
for(int i = 0; i < 3; i++)
{
FragPos = gl_in[i].gl_Position;
gl_Position = projViewMat * FragPos;
EmitVertex();
}
EndPrimitive();
}
}
//shader:fragment
#version 410
in vec4 FragPos;
void main()
{
// This implicitly writes to the depth buffer with no color operations
// Equivalent: gl_FragDepth = gl_FragCoord.z;
}

View File

@ -6,15 +6,19 @@ layout(location=1) in vec3 vertNormalIn;
layout(location=2) in vec2 vertUV0In;
layout(location=3) in vec3 vertColorIn;
uniform mat4 modelMat;
uniform mat4 projViewMat;
uniform mat4 dirLightProjViewMat;
#define NUM_SPOT_LIGHTS 4
uniform mat4 spotLightProjViewMats[NUM_SPOT_LIGHTS];
out vec3 vertNormal;
out vec2 vertUV0;
out vec3 vertColor;
out vec3 fragPos;
out vec4 fragPosDirLight;
uniform mat4 modelMat;
uniform mat4 projViewMat;
uniform mat4 dirLightProjViewMat;
out vec4 fragPosSpotLight[NUM_SPOT_LIGHTS];
void main()
{
@ -31,6 +35,9 @@ void main()
fragPos = modelVert.xyz;
fragPosDirLight = dirLightProjViewMat * vec4(fragPos, 1);
for (int i = 0; i < NUM_SPOT_LIGHTS; i++)
fragPosSpotLight[i] = spotLightProjViewMats[i] * vec4(fragPos, 1);
gl_Position = projViewMat * modelVert;
}
@ -81,6 +88,7 @@ struct SpotLight {
#define NUM_SPOT_LIGHTS 4
uniform SpotLight spotLights[NUM_SPOT_LIGHTS];
uniform sampler2DArray spotLightShadowMaps;
uniform vec3 camPos;
uniform vec3 ambientColor = vec3(0.2, 0.2, 0.2);
@ -90,6 +98,7 @@ in vec3 vertNormal;
in vec2 vertUV0;
in vec3 fragPos;
in vec4 fragPosDirLight;
in vec4 fragPosSpotLight[NUM_SPOT_LIGHTS];
out vec4 fragColor;
@ -123,9 +132,9 @@ float CalcDirShadow(sampler2D shadowMap, vec3 lightDir)
// Basically get soft shadows by averaging this texel and surrounding ones
float shadow = 0;
vec2 texelSize = 1 / textureSize(shadowMap, 0);
for(int x = -1; x <= 1; ++x)
for(int x = -1; x <= 1; x++)
{
for(int y = -1; y <= 1; ++y)
for(int y = -1; y <= 1; y++)
{
float pcfDepth = texture(shadowMap, projCoords.xy + vec2(x, y) * texelSize).r;
@ -205,7 +214,47 @@ vec3 CalcPointLight(PointLight pointLight, int lightIndex)
return (finalDiffuse + finalSpecular) * attenuation * (1 - shadow);
}
vec3 CalcSpotLight(SpotLight light)
float CalcSpotShadow(vec3 lightDir, int lightIndex)
{
// Move from clip space to NDC
vec3 projCoords = fragPosSpotLight[lightIndex].xyz / fragPosSpotLight[lightIndex].w;
// Move from [-1,1] to [0, 1]
projCoords = projCoords * 0.5 + 0.5;
// If sampling outside the depth texture then force 'no shadow'
if(projCoords.z > 1)
return 0;
// currentDepth is the fragment depth from the light's perspective
float currentDepth = projCoords.z;
// Bias in the range [0.005, 0.05] depending on the angle, where a higher
// angle gives a higher bias, as shadow acne gets worse with angle
float bias = max(0.05 * (1 - dot(normalizedVertNorm, lightDir)), 0.005);
// 'Percentage Close Filtering'.
// Basically get soft shadows by averaging this texel and surrounding ones
float shadow = 0;
vec2 texelSize = 1 / textureSize(spotLightShadowMaps, 0).xy;
for(int x = -1; x <= 1; x++)
{
for(int y = -1; y <= 1; y++)
{
float pcfDepth = texture(spotLightShadowMaps, vec3(projCoords.xy + vec2(x, y) * texelSize, lightIndex)).r;
// If our depth is larger than the lights closest depth at the texel we checked (projCoords),
// then there is something closer to the light than us, and so we are in shadow
shadow += currentDepth - bias > pcfDepth ? 1 : 0;
}
}
shadow /= 9;
return shadow;
}
vec3 CalcSpotLight(SpotLight light, int lightIndex)
{
if (light.innerCutoff == 0)
return vec3(0);
@ -231,7 +280,10 @@ vec3 CalcSpotLight(SpotLight light)
float specularAmount = pow(max(dot(normalizedVertNorm, halfwayDir), 0.0), material.shininess);
vec3 finalSpecular = specularAmount * light.specularColor * specularTexColor.rgb;
return (finalDiffuse + finalSpecular) * intensity;
// Shadow
float shadow = CalcSpotShadow(fragToLightDir, lightIndex);
return (finalDiffuse + finalSpecular) * intensity * (1 - shadow);
}
void main()
@ -254,7 +306,7 @@ void main()
for (int i = 0; i < NUM_SPOT_LIGHTS; i++)
{
finalColor += CalcSpotLight(spotLights[i]);
finalColor += CalcSpotLight(spotLights[i], i);
}
vec3 finalEmission = emissionTexColor.rgb;