mirror of
https://github.com/bloeys/nmage.git
synced 2025-12-29 05:18:21 +00:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| abd7079e61 | |||
| 4d8ccdaf56 | |||
| a131e1b52d | |||
| f35c217d73 |
@ -11,6 +11,7 @@ type FramebufferAttachmentType int32
|
||||
const (
|
||||
FramebufferAttachmentType_Unknown FramebufferAttachmentType = iota
|
||||
FramebufferAttachmentType_Texture
|
||||
FramebufferAttachmentType_Texture_Array
|
||||
FramebufferAttachmentType_Renderbuffer
|
||||
FramebufferAttachmentType_Cubemap
|
||||
FramebufferAttachmentType_Cubemap_Array
|
||||
@ -21,6 +22,8 @@ func (f FramebufferAttachmentType) IsValid() bool {
|
||||
switch f {
|
||||
case FramebufferAttachmentType_Texture:
|
||||
fallthrough
|
||||
case FramebufferAttachmentType_Texture_Array:
|
||||
fallthrough
|
||||
case FramebufferAttachmentType_Renderbuffer:
|
||||
fallthrough
|
||||
case FramebufferAttachmentType_Cubemap:
|
||||
@ -180,6 +183,10 @@ func (fbo *Framebuffer) NewColorAttachment(
|
||||
logging.ErrLog.Fatalf("failed creating color attachment because cubemaps can not be color attachments (at least in this implementation. You might be able to do it manually)\n")
|
||||
}
|
||||
|
||||
if attachType == FramebufferAttachmentType_Texture_Array {
|
||||
logging.ErrLog.Fatalf("failed creating color attachment because texture arrays can not be color attachments (implementation can be updated to support it or you can do it manually)\n")
|
||||
}
|
||||
|
||||
if !attachFormat.IsColorFormat() {
|
||||
logging.ErrLog.Fatalf("failed creating color attachment for framebuffer due to attachment data format not being a valid color type. Data format=%d\n", attachFormat)
|
||||
}
|
||||
@ -271,6 +278,10 @@ func (fbo *Framebuffer) NewDepthAttachment(
|
||||
logging.ErrLog.Fatalf("failed creating cubemap array depth attachment because 'NewDepthCubemapArrayAttachment' must be used for that\n")
|
||||
}
|
||||
|
||||
if attachType == FramebufferAttachmentType_Texture_Array {
|
||||
logging.ErrLog.Fatalf("failed creating texture array depth attachment because 'NewDepthTextureArrayAttachment' must be used for that\n")
|
||||
}
|
||||
|
||||
a := FramebufferAttachment{
|
||||
Type: attachType,
|
||||
Format: attachFormat,
|
||||
@ -407,6 +418,68 @@ func (fbo *Framebuffer) NewDepthCubemapArrayAttachment(
|
||||
fbo.Attachments = append(fbo.Attachments, a)
|
||||
}
|
||||
|
||||
func (fbo *Framebuffer) NewDepthTextureArrayAttachment(
|
||||
attachFormat FramebufferAttachmentDataFormat,
|
||||
numTextures int32,
|
||||
) {
|
||||
|
||||
if fbo.HasDepthAttachment() {
|
||||
logging.ErrLog.Fatalf("failed creating texture array depth attachment for framebuffer because a depth attachment already exists\n")
|
||||
}
|
||||
|
||||
if !attachFormat.IsDepthFormat() {
|
||||
logging.ErrLog.Fatalf("failed creating depth attachment for framebuffer due to attachment data format not being a valid depth-stencil type. Data format=%d\n", attachFormat)
|
||||
}
|
||||
|
||||
a := FramebufferAttachment{
|
||||
Type: FramebufferAttachmentType_Texture_Array,
|
||||
Format: attachFormat,
|
||||
}
|
||||
|
||||
fbo.Bind()
|
||||
|
||||
// Create cubemap array
|
||||
gl.GenTextures(1, &a.Id)
|
||||
if a.Id == 0 {
|
||||
logging.ErrLog.Fatalf("failed to generate texture for framebuffer. GlError=%d\n", gl.GetError())
|
||||
}
|
||||
|
||||
gl.BindTexture(gl.TEXTURE_2D_ARRAY, a.Id)
|
||||
|
||||
gl.TexImage3D(
|
||||
gl.TEXTURE_2D_ARRAY,
|
||||
0,
|
||||
attachFormat.GlInternalFormat(),
|
||||
int32(fbo.Width),
|
||||
int32(fbo.Height),
|
||||
numTextures,
|
||||
0,
|
||||
attachFormat.GlFormat(),
|
||||
gl.FLOAT,
|
||||
nil,
|
||||
)
|
||||
|
||||
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_MIN_FILTER, gl.NEAREST)
|
||||
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_MAG_FILTER, gl.NEAREST)
|
||||
|
||||
// This is so that any sampling outside the depth map gives a full depth value.
|
||||
// Useful for example when doing shadow maps where we want things outside
|
||||
// the range of the texture to not show shadow
|
||||
borderColor := []float32{1, 1, 1, 1}
|
||||
gl.TexParameterfv(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_BORDER_COLOR, &borderColor[0])
|
||||
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_BORDER)
|
||||
gl.TexParameteri(gl.TEXTURE_2D_ARRAY, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_BORDER)
|
||||
|
||||
gl.BindTexture(gl.TEXTURE_2D_ARRAY, 0)
|
||||
|
||||
// Attach to fbo
|
||||
gl.FramebufferTexture(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, a.Id, 0)
|
||||
|
||||
fbo.UnBind()
|
||||
fbo.ClearFlags |= gl.DEPTH_BUFFER_BIT
|
||||
fbo.Attachments = append(fbo.Attachments, a)
|
||||
}
|
||||
|
||||
func (fbo *Framebuffer) NewDepthStencilAttachment(
|
||||
attachType FramebufferAttachmentType,
|
||||
attachFormat FramebufferAttachmentDataFormat,
|
||||
|
||||
@ -33,25 +33,12 @@ type Window struct {
|
||||
|
||||
func (w *Window) handleInputs() {
|
||||
|
||||
input.EventLoopStart()
|
||||
imIo := imgui.CurrentIO()
|
||||
|
||||
imguiCaptureMouse := imIo.WantCaptureMouse()
|
||||
imguiCaptureKeyboard := imIo.WantCaptureKeyboard()
|
||||
|
||||
// These two are to fix a bug where state isn't cleared
|
||||
// even after imgui captures the keyboard/mouse.
|
||||
//
|
||||
// For example, if player is moving due to key held and then imgui captures the keyboard,
|
||||
// the player keeps moving even when the key is no longer pressed because the input system never
|
||||
// receives the key up event.
|
||||
if imguiCaptureMouse {
|
||||
input.ClearMouseState()
|
||||
}
|
||||
|
||||
if imguiCaptureKeyboard {
|
||||
input.ClearKeyboardState()
|
||||
}
|
||||
input.EventLoopStart(imguiCaptureMouse, imguiCaptureKeyboard)
|
||||
|
||||
for event := sdl.PollEvent(); event != nil; event = sdl.PollEvent() {
|
||||
|
||||
@ -65,46 +52,27 @@ func (w *Window) handleInputs() {
|
||||
|
||||
case *sdl.MouseWheelEvent:
|
||||
|
||||
if !imguiCaptureMouse {
|
||||
input.HandleMouseWheelEvent(e)
|
||||
}
|
||||
|
||||
input.HandleMouseWheelEvent(e)
|
||||
imIo.AddMouseWheelDelta(float32(e.X), float32(e.Y))
|
||||
|
||||
case *sdl.KeyboardEvent:
|
||||
|
||||
if !imguiCaptureKeyboard {
|
||||
input.HandleKeyboardEvent(e)
|
||||
}
|
||||
input.HandleKeyboardEvent(e)
|
||||
|
||||
// Send modifier key updates to imgui (based on the imgui SDL backend)
|
||||
imIo.AddKeyEvent(imgui.ModCtrl, e.Keysym.Mod&sdl.KMOD_CTRL != 0)
|
||||
imIo.AddKeyEvent(imgui.ModShift, e.Keysym.Mod&sdl.KMOD_SHIFT != 0)
|
||||
imIo.AddKeyEvent(imgui.ModAlt, e.Keysym.Mod&sdl.KMOD_ALT != 0)
|
||||
imIo.AddKeyEvent(imgui.ModSuper, e.Keysym.Mod&sdl.KMOD_GUI != 0)
|
||||
|
||||
imIo.AddKeyEvent(nmageimgui.SdlScancodeToImGuiKey(e.Keysym.Scancode), e.Type == sdl.KEYDOWN)
|
||||
|
||||
// Send modifier key updates to imgui
|
||||
if e.Keysym.Sym == sdl.K_LCTRL || e.Keysym.Sym == sdl.K_RCTRL {
|
||||
imIo.SetKeyCtrl(e.Type == sdl.KEYDOWN)
|
||||
}
|
||||
|
||||
if e.Keysym.Sym == sdl.K_LSHIFT || e.Keysym.Sym == sdl.K_RSHIFT {
|
||||
imIo.SetKeyShift(e.Type == sdl.KEYDOWN)
|
||||
}
|
||||
|
||||
if e.Keysym.Sym == sdl.K_LALT || e.Keysym.Sym == sdl.K_RALT {
|
||||
imIo.SetKeyAlt(e.Type == sdl.KEYDOWN)
|
||||
}
|
||||
|
||||
if e.Keysym.Sym == sdl.K_LGUI || e.Keysym.Sym == sdl.K_RGUI {
|
||||
imIo.SetKeySuper(e.Type == sdl.KEYDOWN)
|
||||
}
|
||||
|
||||
case *sdl.TextInputEvent:
|
||||
imIo.AddInputCharactersUTF8(e.GetText())
|
||||
|
||||
case *sdl.MouseButtonEvent:
|
||||
|
||||
if !imguiCaptureMouse {
|
||||
input.HandleMouseBtnEvent(e)
|
||||
}
|
||||
|
||||
input.HandleMouseBtnEvent(e)
|
||||
isPressed := e.State == sdl.PRESSED
|
||||
|
||||
if e.Button == sdl.BUTTON_LEFT {
|
||||
@ -117,9 +85,7 @@ func (w *Window) handleInputs() {
|
||||
|
||||
case *sdl.MouseMotionEvent:
|
||||
|
||||
if !imguiCaptureMouse {
|
||||
input.HandleMouseMotionEvent(e)
|
||||
}
|
||||
input.HandleMouseMotionEvent(e)
|
||||
|
||||
case *sdl.WindowEvent:
|
||||
|
||||
|
||||
185
input/input.go
185
input/input.go
@ -1,6 +1,23 @@
|
||||
// The input package provides an interface to mouse and keyboard inputs
|
||||
// like key clicks and releases, along with some higher level constructs like
|
||||
// pressed/released this frames, double clicks, and normalized inputs.
|
||||
//
|
||||
// The input package has two sets of functions for most cases, where one
|
||||
// is in the form 'xy' and the other 'xyCaptured'. The captured form
|
||||
// always returns normal events even if the mouse or keyboard are captured
|
||||
// by the UI system. The 'xy' form however will return zero/false if the
|
||||
// respective input device is currently captured (with the exception of mouse position, that is always correctly returned).
|
||||
//
|
||||
// For most cases, you want to use the 'xy' form. For example, you only want to receive
|
||||
// key down events for game character movement when the UI isn't capturing the keyboard,
|
||||
// because otherwise the character will move while typing in a UI textbox.
|
||||
//
|
||||
// The functions IsMouseCaptured and IsKeyboardCaptured are also available.
|
||||
package input
|
||||
|
||||
import "github.com/veandco/go-sdl2/sdl"
|
||||
import (
|
||||
"github.com/veandco/go-sdl2/sdl"
|
||||
)
|
||||
|
||||
type keyState struct {
|
||||
Key sdl.Keycode
|
||||
@ -31,15 +48,22 @@ type mouseWheelState struct {
|
||||
}
|
||||
|
||||
var (
|
||||
keyMap = make(map[sdl.Keycode]keyState)
|
||||
mouseBtnMap = make(map[int]mouseBtnState)
|
||||
mouseMotion = mouseMotionState{}
|
||||
mouseWheel = mouseWheelState{}
|
||||
quitRequested bool
|
||||
mouseWheel = mouseWheelState{}
|
||||
mouseMotion = mouseMotionState{}
|
||||
mouseBtnMap = make(map[int]mouseBtnState)
|
||||
keyMap = make(map[sdl.Keycode]keyState)
|
||||
|
||||
isQuitRequested bool
|
||||
isMouseCaptured bool
|
||||
isKeyboardCaptured bool
|
||||
)
|
||||
|
||||
func EventLoopStart() {
|
||||
func EventLoopStart(mouseGotCaptured, keyboardGotCaptured bool) {
|
||||
|
||||
isMouseCaptured = mouseGotCaptured
|
||||
isKeyboardCaptured = keyboardGotCaptured
|
||||
|
||||
// Update per-frame state
|
||||
for k, v := range keyMap {
|
||||
v.IsPressedThisFrame = false
|
||||
v.IsReleasedThisFrame = false
|
||||
@ -59,7 +83,7 @@ func EventLoopStart() {
|
||||
mouseWheel.XDelta = 0
|
||||
mouseWheel.YDelta = 0
|
||||
|
||||
quitRequested = false
|
||||
isQuitRequested = false
|
||||
}
|
||||
|
||||
func ClearKeyboardState() {
|
||||
@ -73,11 +97,19 @@ func ClearMouseState() {
|
||||
}
|
||||
|
||||
func HandleQuitEvent(e *sdl.QuitEvent) {
|
||||
quitRequested = true
|
||||
isQuitRequested = true
|
||||
}
|
||||
|
||||
func IsMouseCaptured() bool {
|
||||
return isMouseCaptured
|
||||
}
|
||||
|
||||
func IsKeyboardCaptured() bool {
|
||||
return isKeyboardCaptured
|
||||
}
|
||||
|
||||
func IsQuitClicked() bool {
|
||||
return quitRequested
|
||||
return isQuitRequested
|
||||
}
|
||||
|
||||
func HandleKeyboardEvent(e *sdl.KeyboardEvent) {
|
||||
@ -123,18 +155,36 @@ func HandleMouseWheelEvent(e *sdl.MouseWheelEvent) {
|
||||
mouseWheel.YDelta = e.Y
|
||||
}
|
||||
|
||||
// GetMousePos returns the window coordinates of the mouse
|
||||
// GetMousePos returns the window coordinates of the mouse regardless of whether the mouse is captured or not
|
||||
func GetMousePos() (x, y int32) {
|
||||
return mouseMotion.XPos, mouseMotion.YPos
|
||||
}
|
||||
|
||||
// GetMouseMotion returns how many pixels were moved last frame
|
||||
func GetMouseMotion() (xDelta, yDelta int32) {
|
||||
|
||||
if isMouseCaptured {
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
return GetMouseMotionCaptured()
|
||||
}
|
||||
|
||||
func GetMouseMotionCaptured() (xDelta, yDelta int32) {
|
||||
return mouseMotion.XDelta, mouseMotion.YDelta
|
||||
}
|
||||
|
||||
func GetMouseMotionNorm() (xDelta, yDelta int32) {
|
||||
|
||||
if isMouseCaptured {
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
return GetMouseMotionNormCaptured()
|
||||
}
|
||||
|
||||
func GetMouseMotionNormCaptured() (xDelta, yDelta int32) {
|
||||
|
||||
x, y := mouseMotion.XDelta, mouseMotion.YDelta
|
||||
if x > 0 {
|
||||
x = 1
|
||||
@ -152,12 +202,31 @@ func GetMouseMotionNorm() (xDelta, yDelta int32) {
|
||||
}
|
||||
|
||||
func GetMouseWheelMotion() (xDelta, yDelta int32) {
|
||||
|
||||
if isMouseCaptured {
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
return GetMouseWheelMotionCaptured()
|
||||
}
|
||||
|
||||
func GetMouseWheelMotionCaptured() (xDelta, yDelta int32) {
|
||||
return mouseWheel.XDelta, mouseWheel.YDelta
|
||||
}
|
||||
|
||||
// GetMouseWheelXNorm returns 1 if mouse wheel xDelta > 0, -1 if xDelta < 0, and 0 otherwise
|
||||
func GetMouseWheelXNorm() int32 {
|
||||
|
||||
if isMouseCaptured {
|
||||
return 0
|
||||
}
|
||||
|
||||
return GetMouseWheelXNormCaptured()
|
||||
}
|
||||
|
||||
// GetMouseWheelXNormCaptured returns 1 if mouse wheel xDelta > 0, -1 if xDelta < 0, and 0 otherwise
|
||||
func GetMouseWheelXNormCaptured() int32 {
|
||||
|
||||
if mouseWheel.XDelta > 0 {
|
||||
return 1
|
||||
} else if mouseWheel.XDelta < 0 {
|
||||
@ -167,9 +236,19 @@ func GetMouseWheelXNorm() int32 {
|
||||
return 0
|
||||
}
|
||||
|
||||
// returns 1 if mouse wheel yDelta > 0, -1 if yDelta < 0, and 0 otherwise
|
||||
// GetMouseWheelYNorm returns 1 if mouse wheel yDelta > 0, -1 if yDelta < 0, and 0 otherwise
|
||||
func GetMouseWheelYNorm() int32 {
|
||||
|
||||
if isMouseCaptured {
|
||||
return 0
|
||||
}
|
||||
|
||||
return GetMouseWheelYNormCaptured()
|
||||
}
|
||||
|
||||
// GetMouseWheelYNormCaptured returns 1 if mouse wheel yDelta > 0, -1 if yDelta < 0, and 0 otherwise
|
||||
func GetMouseWheelYNormCaptured() int32 {
|
||||
|
||||
if mouseWheel.YDelta > 0 {
|
||||
return 1
|
||||
} else if mouseWheel.YDelta < 0 {
|
||||
@ -181,6 +260,15 @@ func GetMouseWheelYNorm() int32 {
|
||||
|
||||
func KeyClicked(kc sdl.Keycode) bool {
|
||||
|
||||
if isKeyboardCaptured {
|
||||
return false
|
||||
}
|
||||
|
||||
return KeyClickedCaptured(kc)
|
||||
}
|
||||
|
||||
func KeyClickedCaptured(kc sdl.Keycode) bool {
|
||||
|
||||
ks, ok := keyMap[kc]
|
||||
if !ok {
|
||||
return false
|
||||
@ -191,6 +279,15 @@ func KeyClicked(kc sdl.Keycode) bool {
|
||||
|
||||
func KeyReleased(kc sdl.Keycode) bool {
|
||||
|
||||
if isKeyboardCaptured {
|
||||
return false
|
||||
}
|
||||
|
||||
return KeyReleasedCaptured(kc)
|
||||
}
|
||||
|
||||
func KeyReleasedCaptured(kc sdl.Keycode) bool {
|
||||
|
||||
ks, ok := keyMap[kc]
|
||||
if !ok {
|
||||
return false
|
||||
@ -201,6 +298,15 @@ func KeyReleased(kc sdl.Keycode) bool {
|
||||
|
||||
func KeyDown(kc sdl.Keycode) bool {
|
||||
|
||||
if isKeyboardCaptured {
|
||||
return false
|
||||
}
|
||||
|
||||
return KeyDownCaptured(kc)
|
||||
}
|
||||
|
||||
func KeyDownCaptured(kc sdl.Keycode) bool {
|
||||
|
||||
ks, ok := keyMap[kc]
|
||||
if !ok {
|
||||
return false
|
||||
@ -211,6 +317,15 @@ func KeyDown(kc sdl.Keycode) bool {
|
||||
|
||||
func KeyUp(kc sdl.Keycode) bool {
|
||||
|
||||
if isKeyboardCaptured {
|
||||
return false
|
||||
}
|
||||
|
||||
return KeyUpCaptured(kc)
|
||||
}
|
||||
|
||||
func KeyUpCaptured(kc sdl.Keycode) bool {
|
||||
|
||||
ks, ok := keyMap[kc]
|
||||
if !ok {
|
||||
return true
|
||||
@ -221,6 +336,15 @@ func KeyUp(kc sdl.Keycode) bool {
|
||||
|
||||
func MouseClicked(mb int) bool {
|
||||
|
||||
if isMouseCaptured {
|
||||
return false
|
||||
}
|
||||
|
||||
return MouseClickedCaptued(mb)
|
||||
}
|
||||
|
||||
func MouseClickedCaptued(mb int) bool {
|
||||
|
||||
btn, ok := mouseBtnMap[mb]
|
||||
if !ok {
|
||||
return false
|
||||
@ -231,6 +355,15 @@ func MouseClicked(mb int) bool {
|
||||
|
||||
func MouseDoubleClicked(mb int) bool {
|
||||
|
||||
if isMouseCaptured {
|
||||
return false
|
||||
}
|
||||
|
||||
return MouseDoubleClickedCaptured(mb)
|
||||
}
|
||||
|
||||
func MouseDoubleClickedCaptured(mb int) bool {
|
||||
|
||||
btn, ok := mouseBtnMap[mb]
|
||||
if !ok {
|
||||
return false
|
||||
@ -240,6 +373,16 @@ func MouseDoubleClicked(mb int) bool {
|
||||
}
|
||||
|
||||
func MouseReleased(mb int) bool {
|
||||
|
||||
if isMouseCaptured {
|
||||
return false
|
||||
}
|
||||
|
||||
return MouseReleasedCaptured(mb)
|
||||
}
|
||||
|
||||
func MouseReleasedCaptured(mb int) bool {
|
||||
|
||||
btn, ok := mouseBtnMap[mb]
|
||||
if !ok {
|
||||
return false
|
||||
@ -250,6 +393,15 @@ func MouseReleased(mb int) bool {
|
||||
|
||||
func MouseDown(mb int) bool {
|
||||
|
||||
if isMouseCaptured {
|
||||
return false
|
||||
}
|
||||
|
||||
return MouseDownCaptued(mb)
|
||||
}
|
||||
|
||||
func MouseDownCaptued(mb int) bool {
|
||||
|
||||
btn, ok := mouseBtnMap[mb]
|
||||
if !ok {
|
||||
return false
|
||||
@ -260,6 +412,15 @@ func MouseDown(mb int) bool {
|
||||
|
||||
func MouseUp(mb int) bool {
|
||||
|
||||
if isMouseCaptured {
|
||||
return false
|
||||
}
|
||||
|
||||
return MouseUpCaptured(mb)
|
||||
}
|
||||
|
||||
func MouseUpCaptured(mb int) bool {
|
||||
|
||||
btn, ok := mouseBtnMap[mb]
|
||||
if !ok {
|
||||
return true
|
||||
|
||||
258
main.go
258
main.go
@ -32,10 +32,12 @@ import (
|
||||
- Spotlights ✅
|
||||
- Directional light shadows ✅
|
||||
- Point light shadows ✅
|
||||
- Spotlight shadows
|
||||
- Spotlight shadows ✅
|
||||
- UBO support
|
||||
- HDR
|
||||
- Cascaded shadow mapping
|
||||
- Skeletal animations
|
||||
- In some cases we DO want input even when captured by UI. We need two systems within input package, one filtered and one not
|
||||
- Proper model loading (i.e. load model by reading all its meshes, textures, and so on together)
|
||||
- Create VAO struct independent from VBO to support multi-VBO use cases (e.g. instancing) ✅
|
||||
- Renderer batching
|
||||
@ -70,7 +72,7 @@ func (d *DirLight) GetProjViewMat() gglm.Mat4 {
|
||||
farClip := dirLightFar
|
||||
|
||||
projMat := gglm.Ortho(-size, size, -size, size, nearClip, farClip).Mat4
|
||||
viewMat := gglm.LookAtRH(pos, pos.Clone().Add(d.Dir.Clone().Scale(10)), gglm.NewVec3(0, 1, 0)).Mat4
|
||||
viewMat := gglm.LookAtRH(pos, pos.Clone().Add(&d.Dir), gglm.NewVec3(0, 1, 0)).Mat4
|
||||
|
||||
return *projMat.Mul(&viewMat)
|
||||
}
|
||||
@ -93,6 +95,9 @@ type PointLight struct {
|
||||
|
||||
const (
|
||||
MaxPointLights = 8
|
||||
|
||||
// If this changes update the array depth map shader
|
||||
MaxSpotLights = 4
|
||||
)
|
||||
|
||||
var (
|
||||
@ -117,24 +122,42 @@ func (p *PointLight) GetProjViewMats(shadowMapWidth, shadowMapHeight float32) [6
|
||||
}
|
||||
|
||||
type SpotLight struct {
|
||||
Pos gglm.Vec3
|
||||
Dir gglm.Vec3
|
||||
DiffuseColor gglm.Vec3
|
||||
SpecularColor gglm.Vec3
|
||||
InnerCutoff float32
|
||||
OuterCutoff float32
|
||||
Pos gglm.Vec3
|
||||
Dir gglm.Vec3
|
||||
DiffuseColor gglm.Vec3
|
||||
SpecularColor gglm.Vec3
|
||||
InnerCutoffRad float32
|
||||
OuterCutoffRad float32
|
||||
|
||||
// Near plane like 0.x (or anything too small) causes shadows to not work properly.
|
||||
// Needs adjusting as the distance of light to object increases
|
||||
NearPlane float32
|
||||
|
||||
FarPlane float32
|
||||
}
|
||||
|
||||
// SetCutoffs properly sets the cosine values of the cutoffs using the passed
|
||||
// degrees.
|
||||
//
|
||||
// The light has full intensity within the inner cutoff, falloff between
|
||||
// inner-outer cutoff, and zero light beyond the outer cutoff.
|
||||
//
|
||||
// The inner cuttoff degree must be *smaller* than the outer cutoff
|
||||
func (s *SpotLight) SetCutoffs(innerCutoffAngleDeg, outerCutoffAngleDeg float32) {
|
||||
s.InnerCutoff = gglm.Cos32(innerCutoffAngleDeg * gglm.Deg2Rad)
|
||||
s.OuterCutoff = gglm.Cos32(outerCutoffAngleDeg * gglm.Deg2Rad)
|
||||
func (s *SpotLight) GetProjViewMat() gglm.Mat4 {
|
||||
|
||||
projMat := gglm.Perspective(s.OuterCutoffRad*2, 1, s.NearPlane, s.FarPlane)
|
||||
|
||||
// Adjust up vector if lightDir is parallel or nearly parallel to upVector
|
||||
// as lookat view matrix breaks if up and look at are parallel
|
||||
up := gglm.NewVec3(0, 1, 0)
|
||||
if gglm.Abs32(gglm.DotVec3(&s.Dir, up)) > 0.99 {
|
||||
up.SetXY(1, 0)
|
||||
}
|
||||
|
||||
viewMat := gglm.LookAtRH(&s.Pos, s.Pos.Clone().Add(&s.Dir), up).Mat4
|
||||
|
||||
return *projMat.Mul(&viewMat)
|
||||
}
|
||||
|
||||
func (s *SpotLight) InnerCutoffCos() float32 {
|
||||
return gglm.Cos32(s.InnerCutoffRad)
|
||||
}
|
||||
|
||||
func (s *SpotLight) OuterCutoffCos() float32 {
|
||||
return gglm.Cos32(s.OuterCutoffRad)
|
||||
}
|
||||
|
||||
const (
|
||||
@ -153,32 +176,36 @@ var (
|
||||
cam *camera.Camera
|
||||
|
||||
// Demo fbo
|
||||
renderToDemoFbo = true
|
||||
renderToDemoFbo = false
|
||||
renderToBackBuffer = true
|
||||
demoFboScale = gglm.NewVec2(0.25, 0.25)
|
||||
demoFboOffset = gglm.NewVec2(0.75, -0.75)
|
||||
demoFbo buffers.Framebuffer
|
||||
|
||||
// Dir light fbo
|
||||
showDirLightDepthMapFbo = true
|
||||
showDirLightDepthMapFbo = false
|
||||
dirLightDepthMapFboScale = gglm.NewVec2(0.25, 0.25)
|
||||
dirLightDepthMapFboOffset = gglm.NewVec2(0.75, -0.2)
|
||||
dirLightDepthMapFbo buffers.Framebuffer
|
||||
|
||||
// Point light fbo
|
||||
omnidirDepthMapFbo buffers.Framebuffer
|
||||
pointLightDepthMapFbo buffers.Framebuffer
|
||||
|
||||
// Spot light fbo
|
||||
spotLightDepthMapFbo buffers.Framebuffer
|
||||
|
||||
screenQuadVao buffers.VertexArray
|
||||
screenQuadMat *materials.Material
|
||||
|
||||
unlitMat *materials.Material
|
||||
whiteMat *materials.Material
|
||||
containerMat *materials.Material
|
||||
palleteMat *materials.Material
|
||||
skyboxMat *materials.Material
|
||||
dirLightDepthMapMat *materials.Material
|
||||
omnidirDepthMapMat *materials.Material
|
||||
debugDepthMat *materials.Material
|
||||
unlitMat *materials.Material
|
||||
whiteMat *materials.Material
|
||||
containerMat *materials.Material
|
||||
palleteMat *materials.Material
|
||||
skyboxMat *materials.Material
|
||||
depthMapMat *materials.Material
|
||||
arrayDepthMapMat *materials.Material
|
||||
omnidirDepthMapMat *materials.Material
|
||||
debugDepthMat *materials.Material
|
||||
|
||||
cubeMesh *meshes.Mesh
|
||||
sphereMesh *meshes.Mesh
|
||||
@ -245,13 +272,16 @@ var (
|
||||
}
|
||||
spotLights = [...]SpotLight{
|
||||
{
|
||||
Pos: *gglm.NewVec3(2, 5, 5),
|
||||
Dir: *gglm.NewVec3(0, -1, 0),
|
||||
DiffuseColor: *gglm.NewVec3(0, 1, 1),
|
||||
Pos: *gglm.NewVec3(-4, 7, 5),
|
||||
Dir: *gglm.NewVec3(1.5, -0.9, 0).Normalize(),
|
||||
DiffuseColor: *gglm.NewVec3(1, 0, 1),
|
||||
SpecularColor: *gglm.NewVec3(1, 1, 1),
|
||||
// These must be cosine values
|
||||
InnerCutoff: gglm.Cos32(15 * gglm.Deg2Rad),
|
||||
OuterCutoff: gglm.Cos32(20 * gglm.Deg2Rad),
|
||||
InnerCutoffRad: 15 * gglm.Deg2Rad,
|
||||
OuterCutoffRad: 20 * gglm.Deg2Rad,
|
||||
|
||||
NearPlane: 1,
|
||||
FarPlane: 30,
|
||||
},
|
||||
}
|
||||
)
|
||||
@ -442,8 +472,9 @@ func (g *Game) Init() {
|
||||
whiteMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
|
||||
whiteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
|
||||
whiteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
|
||||
whiteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
|
||||
whiteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
|
||||
whiteMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
|
||||
whiteMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
|
||||
|
||||
containerMat = materials.NewMaterial("Container mat", "./res/shaders/simple.glsl")
|
||||
containerMat.Shininess = 64
|
||||
@ -460,8 +491,9 @@ func (g *Game) Init() {
|
||||
containerMat.SetUnifVec3("dirLight.dir", &dirLight.Dir)
|
||||
containerMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
|
||||
containerMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
|
||||
containerMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
|
||||
containerMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
|
||||
containerMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
|
||||
containerMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
|
||||
|
||||
palleteMat = materials.NewMaterial("Pallete mat", "./res/shaders/simple.glsl")
|
||||
palleteMat.Shininess = 64
|
||||
@ -477,12 +509,15 @@ func (g *Game) Init() {
|
||||
palleteMat.SetUnifFloat32("material.shininess", palleteMat.Shininess)
|
||||
palleteMat.SetUnifVec3("dirLight.diffuseColor", &dirLight.DiffuseColor)
|
||||
palleteMat.SetUnifVec3("dirLight.specularColor", &dirLight.SpecularColor)
|
||||
palleteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap))
|
||||
palleteMat.SetUnifInt32("dirLight.shadowMap", int32(materials.TextureSlot_ShadowMap1))
|
||||
palleteMat.SetUnifInt32("pointLightCubeShadowMaps", int32(materials.TextureSlot_Cubemap_Array))
|
||||
palleteMat.SetUnifInt32("spotLightShadowMaps", int32(materials.TextureSlot_ShadowMap_Array1))
|
||||
|
||||
debugDepthMat = materials.NewMaterial("Debug depth mat", "./res/shaders/debug-depth.glsl")
|
||||
|
||||
dirLightDepthMapMat = materials.NewMaterial("Directional Depth Map mat", "./res/shaders/directional-depth-map.glsl")
|
||||
depthMapMat = materials.NewMaterial("Depth Map mat", "./res/shaders/depth-map.glsl")
|
||||
|
||||
arrayDepthMapMat = materials.NewMaterial("Array Depth Map mat", "./res/shaders/array-depth-map.glsl")
|
||||
|
||||
omnidirDepthMapMat = materials.NewMaterial("Omnidirectional Depth Map mat", "./res/shaders/omnidirectional-depth-map.glsl")
|
||||
|
||||
@ -540,15 +575,25 @@ func (g *Game) initFbos() {
|
||||
|
||||
assert.T(dirLightDepthMapFbo.IsComplete(), "Depth map fbo is not complete after init")
|
||||
|
||||
// Cubemap fbo
|
||||
omnidirDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
|
||||
omnidirDepthMapFbo.SetNoColorBuffer()
|
||||
omnidirDepthMapFbo.NewDepthCubemapArrayAttachment(
|
||||
// Point light depth map fbo
|
||||
pointLightDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
|
||||
pointLightDepthMapFbo.SetNoColorBuffer()
|
||||
pointLightDepthMapFbo.NewDepthCubemapArrayAttachment(
|
||||
buffers.FramebufferAttachmentDataFormat_DepthF32,
|
||||
MaxPointLights,
|
||||
)
|
||||
|
||||
assert.T(omnidirDepthMapFbo.IsComplete(), "Cubemap fbo is not complete after init")
|
||||
assert.T(pointLightDepthMapFbo.IsComplete(), "Point light depth map fbo is not complete after init")
|
||||
|
||||
// Spot light depth map fbo
|
||||
spotLightDepthMapFbo = buffers.NewFramebuffer(1024, 1024)
|
||||
spotLightDepthMapFbo.SetNoColorBuffer()
|
||||
spotLightDepthMapFbo.NewDepthTextureArrayAttachment(
|
||||
buffers.FramebufferAttachmentDataFormat_DepthF32,
|
||||
MaxSpotLights,
|
||||
)
|
||||
|
||||
assert.T(spotLightDepthMapFbo.IsComplete(), "Spot light depth map fbo is not complete after init")
|
||||
}
|
||||
|
||||
func (g *Game) updateLights() {
|
||||
@ -593,14 +638,17 @@ func (g *Game) updateLights() {
|
||||
palleteMat.SetUnifFloat32(indexString+".farPlane", p.FarPlane)
|
||||
}
|
||||
|
||||
whiteMat.CubemapArrayTex = omnidirDepthMapFbo.Attachments[0].Id
|
||||
containerMat.CubemapArrayTex = omnidirDepthMapFbo.Attachments[0].Id
|
||||
palleteMat.CubemapArrayTex = omnidirDepthMapFbo.Attachments[0].Id
|
||||
whiteMat.CubemapArrayTex = pointLightDepthMapFbo.Attachments[0].Id
|
||||
containerMat.CubemapArrayTex = pointLightDepthMapFbo.Attachments[0].Id
|
||||
palleteMat.CubemapArrayTex = pointLightDepthMapFbo.Attachments[0].Id
|
||||
|
||||
// Spotlights
|
||||
for i := 0; i < len(spotLights); i++ {
|
||||
|
||||
l := &spotLights[i]
|
||||
innerCutoffCos := l.InnerCutoffCos()
|
||||
outerCutoffCos := l.OuterCutoffCos()
|
||||
|
||||
indexString := "spotLights[" + strconv.Itoa(i) + "]"
|
||||
|
||||
whiteMat.SetUnifVec3(indexString+".pos", &l.Pos)
|
||||
@ -619,14 +667,18 @@ func (g *Game) updateLights() {
|
||||
containerMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
|
||||
palleteMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
|
||||
|
||||
whiteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
|
||||
containerMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
|
||||
palleteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
|
||||
whiteMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
|
||||
containerMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
|
||||
palleteMat.SetUnifFloat32(indexString+".innerCutoff", innerCutoffCos)
|
||||
|
||||
whiteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
|
||||
containerMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
|
||||
palleteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
|
||||
whiteMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
|
||||
containerMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
|
||||
palleteMat.SetUnifFloat32(indexString+".outerCutoff", outerCutoffCos)
|
||||
}
|
||||
|
||||
whiteMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
|
||||
containerMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
|
||||
palleteMat.ShadowMapTexArray1 = spotLightDepthMapFbo.Attachments[0].Id
|
||||
}
|
||||
|
||||
func (g *Game) Update() {
|
||||
@ -638,11 +690,6 @@ func (g *Game) Update() {
|
||||
g.updateCameraLookAround()
|
||||
g.updateCameraPos()
|
||||
|
||||
//Rotating cubes
|
||||
if input.KeyDown(sdl.K_SPACE) {
|
||||
cubeModelMat.Rotate(10*timing.DT()*gglm.Deg2Rad, gglm.NewVec3(1, 1, 1).Normalize())
|
||||
}
|
||||
|
||||
g.showDebugWindow()
|
||||
|
||||
if input.KeyClicked(sdl.K_F4) {
|
||||
@ -763,6 +810,8 @@ func (g *Game) showDebugWindow() {
|
||||
}
|
||||
|
||||
// Spot lights
|
||||
imgui.Checkbox("Render Spot Light Shadows", &renderSpotLightShadows)
|
||||
|
||||
if imgui.BeginListBoxV("Spot Lights", imgui.Vec2{Y: 200}) {
|
||||
|
||||
for i := 0; i < len(spotLights); i++ {
|
||||
@ -800,18 +849,27 @@ func (g *Game) showDebugWindow() {
|
||||
palleteMat.SetUnifVec3(indexString+".specularColor", &l.SpecularColor)
|
||||
}
|
||||
|
||||
if imgui.DragFloat("Inner Cutoff", &l.InnerCutoff) {
|
||||
whiteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
|
||||
containerMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
|
||||
palleteMat.SetUnifFloat32(indexString+".innerCutoff", l.InnerCutoff)
|
||||
if imgui.DragFloat("Inner Cutoff Radians", &l.InnerCutoffRad) {
|
||||
|
||||
cos := l.InnerCutoffCos()
|
||||
|
||||
whiteMat.SetUnifFloat32(indexString+".innerCutoff", cos)
|
||||
containerMat.SetUnifFloat32(indexString+".innerCutoff", cos)
|
||||
palleteMat.SetUnifFloat32(indexString+".innerCutoff", cos)
|
||||
}
|
||||
|
||||
if imgui.DragFloat("Outer Cutoff", &l.OuterCutoff) {
|
||||
whiteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
|
||||
containerMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
|
||||
palleteMat.SetUnifFloat32(indexString+".outerCutoff", l.OuterCutoff)
|
||||
if imgui.DragFloat("Outer Cutoff Radians", &l.OuterCutoffRad) {
|
||||
|
||||
cos := l.OuterCutoffCos()
|
||||
|
||||
whiteMat.SetUnifFloat32(indexString+".outerCutoff", cos)
|
||||
containerMat.SetUnifFloat32(indexString+".outerCutoff", cos)
|
||||
palleteMat.SetUnifFloat32(indexString+".outerCutoff", cos)
|
||||
}
|
||||
|
||||
imgui.DragFloat("Spot Near Plane", &l.NearPlane)
|
||||
imgui.DragFloat("Spot Far Plane", &l.FarPlane)
|
||||
|
||||
imgui.TreePop()
|
||||
}
|
||||
|
||||
@ -902,24 +960,36 @@ func (g *Game) updateCameraPos() {
|
||||
var (
|
||||
renderDirLightShadows = true
|
||||
renderPointLightShadows = true
|
||||
renderSpotLightShadows = true
|
||||
|
||||
rotatingCubeSpeedDeg1 float32 = 45
|
||||
rotatingCubeSpeedDeg2 float32 = 120
|
||||
rotatingCubeSpeedDeg3 float32 = 120
|
||||
rotatingCubeTrMat1 = *gglm.NewTrMatId().Translate(gglm.NewVec3(-4, -1, 4))
|
||||
rotatingCubeTrMat2 = *gglm.NewTrMatId().Translate(gglm.NewVec3(-1, 0.5, 4))
|
||||
rotatingCubeTrMat3 = *gglm.NewTrMatId().Translate(gglm.NewVec3(5, 0.5, 4))
|
||||
)
|
||||
|
||||
func (g *Game) Render() {
|
||||
|
||||
whiteMat.SetUnifVec3("camPos", &cam.Pos)
|
||||
containerMat.SetUnifVec3("camPos", &cam.Pos)
|
||||
palleteMat.SetUnifVec3("camPos", &cam.Pos)
|
||||
|
||||
rotatingCubeTrMat1.Rotate(rotatingCubeSpeedDeg1*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(0, 1, 0))
|
||||
rotatingCubeTrMat2.Rotate(rotatingCubeSpeedDeg2*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(1, 1, 0))
|
||||
rotatingCubeTrMat3.Rotate(rotatingCubeSpeedDeg3*gglm.Deg2Rad*timing.DT(), gglm.NewVec3(1, 1, 1))
|
||||
|
||||
if renderDirLightShadows {
|
||||
g.renderDirectionalShadowmap()
|
||||
g.renderDirectionalLightShadowmap()
|
||||
}
|
||||
|
||||
if renderSpotLightShadows {
|
||||
g.renderSpotLightShadowmaps()
|
||||
}
|
||||
|
||||
if renderPointLightShadows {
|
||||
g.renderOmnidirectionalShadowmap()
|
||||
g.renderPointLightShadowmaps()
|
||||
}
|
||||
|
||||
if renderToBackBuffer {
|
||||
@ -940,21 +1010,16 @@ func (g *Game) Render() {
|
||||
}
|
||||
}
|
||||
|
||||
func (g *Game) renderDirectionalShadowmap() {
|
||||
func (g *Game) renderDirectionalLightShadowmap() {
|
||||
|
||||
// Set some uniforms
|
||||
dirLightProjViewMat := dirLight.GetProjViewMat()
|
||||
|
||||
whiteMat.SetUnifVec3("camPos", &cam.Pos)
|
||||
whiteMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
|
||||
|
||||
containerMat.SetUnifVec3("camPos", &cam.Pos)
|
||||
containerMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
|
||||
|
||||
palleteMat.SetUnifVec3("camPos", &cam.Pos)
|
||||
palleteMat.SetUnifMat4("dirLightProjViewMat", &dirLightProjViewMat)
|
||||
|
||||
dirLightDepthMapMat.SetUnifMat4("projViewMat", &dirLightProjViewMat)
|
||||
depthMapMat.SetUnifMat4("projViewMat", &dirLightProjViewMat)
|
||||
|
||||
// Start rendering
|
||||
dirLightDepthMapFbo.BindWithViewport()
|
||||
@ -966,7 +1031,7 @@ func (g *Game) renderDirectionalShadowmap() {
|
||||
//
|
||||
// Some note that this is too troublesome and fails in many cases. Might be better to remove.
|
||||
gl.CullFace(gl.FRONT)
|
||||
g.RenderScene(dirLightDepthMapMat)
|
||||
g.RenderScene(depthMapMat)
|
||||
gl.CullFace(gl.BACK)
|
||||
|
||||
dirLightDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
|
||||
@ -980,10 +1045,41 @@ func (g *Game) renderDirectionalShadowmap() {
|
||||
}
|
||||
}
|
||||
|
||||
func (g *Game) renderOmnidirectionalShadowmap() {
|
||||
func (g *Game) renderSpotLightShadowmaps() {
|
||||
|
||||
omnidirDepthMapFbo.BindWithViewport()
|
||||
omnidirDepthMapFbo.Clear()
|
||||
for i := 0; i < len(spotLights); i++ {
|
||||
|
||||
l := &spotLights[i]
|
||||
indexStr := strconv.Itoa(i)
|
||||
projViewMatIndexStr := "spotLightProjViewMats[" + indexStr + "]"
|
||||
|
||||
// Set render uniforms
|
||||
projViewMat := l.GetProjViewMat()
|
||||
|
||||
whiteMat.SetUnifMat4(projViewMatIndexStr, &projViewMat)
|
||||
containerMat.SetUnifMat4(projViewMatIndexStr, &projViewMat)
|
||||
palleteMat.SetUnifMat4(projViewMatIndexStr, &projViewMat)
|
||||
|
||||
// Set depth uniforms
|
||||
arrayDepthMapMat.SetUnifMat4("projViewMats["+indexStr+"]", &projViewMat)
|
||||
}
|
||||
|
||||
// Render
|
||||
spotLightDepthMapFbo.BindWithViewport()
|
||||
spotLightDepthMapFbo.Clear()
|
||||
|
||||
// Front culling created issues
|
||||
// gl.CullFace(gl.FRONT)
|
||||
g.RenderScene(arrayDepthMapMat)
|
||||
// gl.CullFace(gl.BACK)
|
||||
|
||||
spotLightDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
|
||||
}
|
||||
|
||||
func (g *Game) renderPointLightShadowmaps() {
|
||||
|
||||
pointLightDepthMapFbo.BindWithViewport()
|
||||
pointLightDepthMapFbo.Clear()
|
||||
|
||||
for i := 0; i < len(pointLights); i++ {
|
||||
|
||||
@ -995,7 +1091,7 @@ func (g *Game) renderOmnidirectionalShadowmap() {
|
||||
omnidirDepthMapMat.SetUnifFloat32("farPlane", p.FarPlane)
|
||||
|
||||
// Set projView matrices
|
||||
projViewMats := p.GetProjViewMats(float32(omnidirDepthMapFbo.Width), float32(omnidirDepthMapFbo.Height))
|
||||
projViewMats := p.GetProjViewMats(float32(pointLightDepthMapFbo.Width), float32(pointLightDepthMapFbo.Height))
|
||||
for j := 0; j < len(projViewMats); j++ {
|
||||
omnidirDepthMapMat.SetUnifMat4("cubemapProjViewMats["+strconv.Itoa(j)+"]", &projViewMats[j])
|
||||
}
|
||||
@ -1003,7 +1099,7 @@ func (g *Game) renderOmnidirectionalShadowmap() {
|
||||
g.RenderScene(omnidirDepthMapMat)
|
||||
}
|
||||
|
||||
omnidirDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
|
||||
pointLightDepthMapFbo.UnBindWithViewport(uint32(g.WinWidth), uint32(g.WinHeight))
|
||||
}
|
||||
|
||||
func (g *Game) renderDemoFob() {
|
||||
@ -1070,8 +1166,8 @@ func (g *Game) RenderScene(overrideMat *materials.Material) {
|
||||
|
||||
// Rotating cubes
|
||||
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat1, cubeMat)
|
||||
|
||||
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat2, cubeMat)
|
||||
window.Rend.DrawMesh(cubeMesh, &rotatingCubeTrMat3, cubeMat)
|
||||
|
||||
// Cubes generator
|
||||
// rowSize := 1
|
||||
|
||||
@ -11,13 +11,14 @@ import (
|
||||
type TextureSlot uint32
|
||||
|
||||
const (
|
||||
TextureSlot_Diffuse TextureSlot = 0
|
||||
TextureSlot_Specular TextureSlot = 1
|
||||
TextureSlot_Normal TextureSlot = 2
|
||||
TextureSlot_Emission TextureSlot = 3
|
||||
TextureSlot_Cubemap TextureSlot = 10
|
||||
TextureSlot_ShadowMap TextureSlot = 11
|
||||
TextureSlot_Cubemap_Array TextureSlot = 12
|
||||
TextureSlot_Diffuse TextureSlot = 0
|
||||
TextureSlot_Specular TextureSlot = 1
|
||||
TextureSlot_Normal TextureSlot = 2
|
||||
TextureSlot_Emission TextureSlot = 3
|
||||
TextureSlot_Cubemap TextureSlot = 10
|
||||
TextureSlot_Cubemap_Array TextureSlot = 11
|
||||
TextureSlot_ShadowMap1 TextureSlot = 12
|
||||
TextureSlot_ShadowMap_Array1 TextureSlot = 13
|
||||
)
|
||||
|
||||
type Material struct {
|
||||
@ -42,7 +43,8 @@ type Material struct {
|
||||
CubemapArrayTex uint32
|
||||
|
||||
// Shadowmaps
|
||||
ShadowMapTex1 uint32
|
||||
ShadowMapTex1 uint32
|
||||
ShadowMapTexArray1 uint32
|
||||
}
|
||||
|
||||
func (m *Material) Bind() {
|
||||
@ -80,9 +82,14 @@ func (m *Material) Bind() {
|
||||
}
|
||||
|
||||
if m.ShadowMapTex1 != 0 {
|
||||
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap))
|
||||
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap1))
|
||||
gl.BindTexture(gl.TEXTURE_2D, m.ShadowMapTex1)
|
||||
}
|
||||
|
||||
if m.ShadowMapTexArray1 != 0 {
|
||||
gl.ActiveTexture(uint32(gl.TEXTURE0 + TextureSlot_ShadowMap_Array1))
|
||||
gl.BindTexture(gl.TEXTURE_2D_ARRAY, m.ShadowMapTexArray1)
|
||||
}
|
||||
}
|
||||
|
||||
func (m *Material) UnBind() {
|
||||
|
||||
54
res/shaders/array-depth-map.glsl
Executable file
54
res/shaders/array-depth-map.glsl
Executable file
@ -0,0 +1,54 @@
|
||||
//shader:vertex
|
||||
#version 410
|
||||
|
||||
layout(location=0) in vec3 vertPosIn;
|
||||
|
||||
uniform mat4 modelMat;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = modelMat * vec4(vertPosIn, 1);
|
||||
}
|
||||
|
||||
//shader:geometry
|
||||
#version 410
|
||||
|
||||
layout (triangles) in;
|
||||
|
||||
#define NUM_PROJ_VIEW_MATS 4
|
||||
|
||||
// 3 * NUM_PROJ_VIEW_MATS
|
||||
layout (triangle_strip, max_vertices=12) out;
|
||||
|
||||
// This is the same number as max spot lights or whatever else is being rendered
|
||||
uniform mat4 projViewMats[NUM_PROJ_VIEW_MATS];
|
||||
|
||||
out vec4 FragPos;
|
||||
|
||||
void main()
|
||||
{
|
||||
for(int projViewMatIndex = 0; projViewMatIndex < NUM_PROJ_VIEW_MATS; projViewMatIndex++){
|
||||
|
||||
gl_Layer = projViewMatIndex;
|
||||
mat4 projViewMat = projViewMats[projViewMatIndex];
|
||||
|
||||
for(int i = 0; i < 3; i++)
|
||||
{
|
||||
FragPos = gl_in[i].gl_Position;
|
||||
gl_Position = projViewMat * FragPos;
|
||||
EmitVertex();
|
||||
}
|
||||
EndPrimitive();
|
||||
}
|
||||
}
|
||||
|
||||
//shader:fragment
|
||||
#version 410
|
||||
|
||||
in vec4 FragPos;
|
||||
|
||||
void main()
|
||||
{
|
||||
// This implicitly writes to the depth buffer with no color operations
|
||||
// Equivalent: gl_FragDepth = gl_FragCoord.z;
|
||||
}
|
||||
@ -6,15 +6,19 @@ layout(location=1) in vec3 vertNormalIn;
|
||||
layout(location=2) in vec2 vertUV0In;
|
||||
layout(location=3) in vec3 vertColorIn;
|
||||
|
||||
uniform mat4 modelMat;
|
||||
uniform mat4 projViewMat;
|
||||
uniform mat4 dirLightProjViewMat;
|
||||
|
||||
#define NUM_SPOT_LIGHTS 4
|
||||
uniform mat4 spotLightProjViewMats[NUM_SPOT_LIGHTS];
|
||||
|
||||
out vec3 vertNormal;
|
||||
out vec2 vertUV0;
|
||||
out vec3 vertColor;
|
||||
out vec3 fragPos;
|
||||
out vec4 fragPosDirLight;
|
||||
|
||||
uniform mat4 modelMat;
|
||||
uniform mat4 projViewMat;
|
||||
uniform mat4 dirLightProjViewMat;
|
||||
out vec4 fragPosSpotLight[NUM_SPOT_LIGHTS];
|
||||
|
||||
void main()
|
||||
{
|
||||
@ -31,6 +35,9 @@ void main()
|
||||
fragPos = modelVert.xyz;
|
||||
fragPosDirLight = dirLightProjViewMat * vec4(fragPos, 1);
|
||||
|
||||
for (int i = 0; i < NUM_SPOT_LIGHTS; i++)
|
||||
fragPosSpotLight[i] = spotLightProjViewMats[i] * vec4(fragPos, 1);
|
||||
|
||||
gl_Position = projViewMat * modelVert;
|
||||
}
|
||||
|
||||
@ -81,6 +88,7 @@ struct SpotLight {
|
||||
|
||||
#define NUM_SPOT_LIGHTS 4
|
||||
uniform SpotLight spotLights[NUM_SPOT_LIGHTS];
|
||||
uniform sampler2DArray spotLightShadowMaps;
|
||||
|
||||
uniform vec3 camPos;
|
||||
uniform vec3 ambientColor = vec3(0.2, 0.2, 0.2);
|
||||
@ -90,6 +98,7 @@ in vec3 vertNormal;
|
||||
in vec2 vertUV0;
|
||||
in vec3 fragPos;
|
||||
in vec4 fragPosDirLight;
|
||||
in vec4 fragPosSpotLight[NUM_SPOT_LIGHTS];
|
||||
|
||||
out vec4 fragColor;
|
||||
|
||||
@ -123,9 +132,9 @@ float CalcDirShadow(sampler2D shadowMap, vec3 lightDir)
|
||||
// Basically get soft shadows by averaging this texel and surrounding ones
|
||||
float shadow = 0;
|
||||
vec2 texelSize = 1 / textureSize(shadowMap, 0);
|
||||
for(int x = -1; x <= 1; ++x)
|
||||
for(int x = -1; x <= 1; x++)
|
||||
{
|
||||
for(int y = -1; y <= 1; ++y)
|
||||
for(int y = -1; y <= 1; y++)
|
||||
{
|
||||
float pcfDepth = texture(shadowMap, projCoords.xy + vec2(x, y) * texelSize).r;
|
||||
|
||||
@ -205,7 +214,47 @@ vec3 CalcPointLight(PointLight pointLight, int lightIndex)
|
||||
return (finalDiffuse + finalSpecular) * attenuation * (1 - shadow);
|
||||
}
|
||||
|
||||
vec3 CalcSpotLight(SpotLight light)
|
||||
float CalcSpotShadow(vec3 lightDir, int lightIndex)
|
||||
{
|
||||
// Move from clip space to NDC
|
||||
vec3 projCoords = fragPosSpotLight[lightIndex].xyz / fragPosSpotLight[lightIndex].w;
|
||||
|
||||
// Move from [-1,1] to [0, 1]
|
||||
projCoords = projCoords * 0.5 + 0.5;
|
||||
|
||||
// If sampling outside the depth texture then force 'no shadow'
|
||||
if(projCoords.z > 1)
|
||||
return 0;
|
||||
|
||||
// currentDepth is the fragment depth from the light's perspective
|
||||
float currentDepth = projCoords.z;
|
||||
|
||||
// Bias in the range [0.005, 0.05] depending on the angle, where a higher
|
||||
// angle gives a higher bias, as shadow acne gets worse with angle
|
||||
float bias = max(0.05 * (1 - dot(normalizedVertNorm, lightDir)), 0.005);
|
||||
|
||||
// 'Percentage Close Filtering'.
|
||||
// Basically get soft shadows by averaging this texel and surrounding ones
|
||||
float shadow = 0;
|
||||
vec2 texelSize = 1 / textureSize(spotLightShadowMaps, 0).xy;
|
||||
for(int x = -1; x <= 1; x++)
|
||||
{
|
||||
for(int y = -1; y <= 1; y++)
|
||||
{
|
||||
float pcfDepth = texture(spotLightShadowMaps, vec3(projCoords.xy + vec2(x, y) * texelSize, lightIndex)).r;
|
||||
|
||||
// If our depth is larger than the lights closest depth at the texel we checked (projCoords),
|
||||
// then there is something closer to the light than us, and so we are in shadow
|
||||
shadow += currentDepth - bias > pcfDepth ? 1 : 0;
|
||||
}
|
||||
}
|
||||
|
||||
shadow /= 9;
|
||||
|
||||
return shadow;
|
||||
}
|
||||
|
||||
vec3 CalcSpotLight(SpotLight light, int lightIndex)
|
||||
{
|
||||
if (light.innerCutoff == 0)
|
||||
return vec3(0);
|
||||
@ -231,7 +280,10 @@ vec3 CalcSpotLight(SpotLight light)
|
||||
float specularAmount = pow(max(dot(normalizedVertNorm, halfwayDir), 0.0), material.shininess);
|
||||
vec3 finalSpecular = specularAmount * light.specularColor * specularTexColor.rgb;
|
||||
|
||||
return (finalDiffuse + finalSpecular) * intensity;
|
||||
// Shadow
|
||||
float shadow = CalcSpotShadow(fragToLightDir, lightIndex);
|
||||
|
||||
return (finalDiffuse + finalSpecular) * intensity * (1 - shadow);
|
||||
}
|
||||
|
||||
void main()
|
||||
@ -254,7 +306,7 @@ void main()
|
||||
|
||||
for (int i = 0; i < NUM_SPOT_LIGHTS; i++)
|
||||
{
|
||||
finalColor += CalcSpotLight(spotLights[i]);
|
||||
finalColor += CalcSpotLight(spotLights[i], i);
|
||||
}
|
||||
|
||||
vec3 finalEmission = emissionTexColor.rgb;
|
||||
|
||||
Reference in New Issue
Block a user